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1 Algebraic Geometry Continued

1.1 Finiteness Conditions

Definition 1.1. A scheme is quasicompact (qc) if it’s a finite union of open
affines.

In general, a topological space is quasicompact if every open cover of it
has a finite subcover. Many interesting schemes are not quasicompact, e.g.∐

n∈Z Spec k (the “constant group scheme associated to Z over k”) for a field k.

Definition 1.2. A scheme is quasiseparated (qs) if the intersection of any two
open affines is quasi-compact.

Reassuringly, you’ll rarely meet non-quasiseparated schemes. One coun-
terexample can be constructed as follows: Let A∞

k = Spec k[T0, T1, . . .], then
U = A∞

k \ {(T0, T1, . . .)} =
⋃

n≥0D(Tn) is not quasicompact, so the scheme X
constructed by gluing two copies of A∞

k together along U would not be qua-
siseparated.
We say a scheme is qcqs if it’s both quasicompact and quasiseparated.
There are also versions of quasicompactness and quasiseparatedness as relative
notions (i.e. properties of morphisms).

Definition 1.3. A morphism f : X → Y is quasicompact (resp. quasisepa-
rated) if for all affine V ⊂ Y , f−1(V ) is quasicompact (resp. quasiseparated).
We say f is separated if ∆ : X → X ×Y X is closed (equivalently, ∆ is a closed
immersion).

Notably, f is quasiseparated iff ∆ is quasicompact.
A lot of Picard schemes are not separated as you might have seen.

Definition 1.4. A scheme is locally Noetherian iff any open affine SpecR in it
has R Noetherian.

Equivalently, a scheme is Noetherian iff it has an affine cover (SpecRi)i
where each Ri is Noetherian.

Definition 1.5. A scheme is Noetherian iff it is locally Noetherian and quasi-
compact.

(Locally) Noetherian schemes are nice because Noetherian rings are nice
(duh!), but there are “natural” schemes that are not (locally) Noetherian. Take
X = SpecC[T, T−1] = A1

C\{0}. Topologically X(C) = C× has a universal cover
given by C = A1

C via the exponential map, which is sadly not induced by a mor-
phism of schemes. As a substitute, we can take Xn = SpecC[T 1/n, T−1/n]
which admits a natural map to X. On X(C), this natural map gives the
familiar power function C× → C×, z 7→ zn. We can take a limit to get
X̃ = SpecC[{T 1/n}, T−1] → X which works just like a universal cover. But
now X̃ is not locally Noetherian since the ideal generated by {T 1/n − 1} is not
finitely generated.
Let π : X̃ → X be the covering map, then the fibre π−1(x) at x = T − 1 is an
affine scheme whose complex points are exactly

{(zn)n≥1, zn ∈ µn(C), zmmn = zn} = lim←−
n≥1

µn(Z) ∼= lim←−
n≥1

Z/nZ = Ẑ =
∏
p

Zp

where the last space is given the profinite topology.
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Definition 1.6. A morphism f : X → Y is locally of finite type if for all x ∈ X,
there is an open affine U = SpecB ⊂ X around x such that f(U) ⊂ V =
SpecA ⊂ Y and B is an A-algebra of finite type via f , i.e. B ∼= A[T1, . . . , Tn]/I
for some ideal I. f is locally of finite presentation if in addition that I is finitely
generated.
f is of finite type if it is locally of finite type and quasicompact. It is of finite
presentation if it is locally of finite presentation and qcqs.

1.2 Kähler Differentials

Let B be an A-algebra, which as you know is the data of a ring homomorphism
A→ B.
We are going to define a B-module ΩB/A of Kähler differentials equipped with a
map d = dB/A : B → ΩB/A such that d(b1+b2) = db1+db2,d(a) = 0,d(b1b2) =
b1 db2 + b2 db1 for a ∈ A, b1, b2 ∈ B.
The way we construct this is quite brute force on first sight: We take ΩB/A =
P/Q where P is the free B-module on {[b] : b ∈ B} and Q is the submodule
generated by [a], [b1+b2]−[b1]−[b2], [b1b2]−b1[b2]−b2[b1] for all a ∈ A, b1, b2 ∈ B.
The map it comes with is, expectedly, d(b) = [b] mod Q.
This certainly looks unappetising, but it is in fact universal.

Definition 1.7. An A-derivation of B into a B-module M is an additive map
D : B → M such that D(a) = 0,D(b1b2) = b1 D(b2) + b2 D(b1) for all a ∈
A, b1, b2 ∈ B.
We set DerA(B,M) to be the set of A-derivations B → M which admits the
natural structure of a B-module via x 7→ bD(x).

Clearly if ϕ : M → N is a B-module map and D ∈ DerA(B,M), then
ϕ ◦D ∈ DerA(B,N).

Proposition 1.1. Let M be a B-module, then the map HomB(ΩB/A,M) →
DerA(B,M) given by ψ 7→ ψ ◦ dB/A is an isomorphism.

Proof. Suppose D ∈ DerA(B,M). Consider ψ̄ : P → M extended from [b] 7→
D(b). Then ψ̄(Q) = 0 as D is a derivation, so it factors through some ψ :
ΩB/A = P/Q→ M , necessarily along dB/A. This gives surjectivity. Injectivity
follows from the fact that {db : b ∈ B} generates ΩB/A.

As universal it might be, we still want a nice description of ΩB/A. Consider
the A-module map µ : B ⊗A B → B extended from µ(b1 ⊗ b2) = b1b2. This is
also a B-algebra map for both the B-algebra structures b 7→ b⊗1 and b 7→ 1⊗b.
We shall take the first structure as our convention.
Let J = kerµ ⊂ B ⊗A B. Then J/J2 is a B-module whose structure does not
actually depend on which B-algebra structure on B ⊗A B we take.

Proposition 1.2. The map d′ : B → J/J2 via b 7→ (1⊗ b− b⊗ 1) mod J2 is a
derivation, with associated B-module map ΩB/A → J/J2 an isomorphism.

Proof. It’s easy to check that d′ is indeed a derivation.
The candidate isomorphism is ψ : ΩB/A → J/J2,d(b) 7→ d′(b). Consider ϕ :
B⊗AB → ΩB/A extending from b⊗ b′ 7→ bdb′. J is generated by {1⊗ b− b⊗1 :
b ∈ B} as a B-module. Now ϕ((1 ⊗ b − b ⊗ 1)(1 ⊗ b′ − b′ ⊗ 1)) = d(bb′) −
bdb′ − b′ db = 0, so ϕ factors through ϕ̄ : B ⊗A B/J

2. Via calculations we find
ϕ̄ ◦ ψ = id, ψ ◦ ϕ̄|J/J2 = id.
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The construction ΩB/A has nice functorial properties:

B B′

A A′

commutes in the category of rings, we get a B-module map ΩB/A → ΩB′/A′

which makes
ΩB/A ΩB′/A′

B B′

d d

commute. This also induces a map ΩB/A ⊗B B′ → ΩB′/A′ , which is sometimes
an isomorphism.

Proposition 1.3. If B′ = B ⊗A A
′, then the map ΩB/A ⊗B B

′ → ΩB′/A′ is an
isomorphism.

Proof. Immediate.

So if S ⊂ B is a multiplicative system, then S−1ΩB/A
∼= ΩS−1B/A.

Example 1.1. Take the polynomial algebra B = A[t1, . . . , tn], then ΩB/A =⊕
iB dti is free. Indeed, B ⊗A B = A[{ti ⊗ 1, 1 ⊗ ti}] ∼= B[{zi}], zi = 1 ⊗ ti −

ti ⊗ 1 ∈ J . Thus J = (z1, . . . , zn), J
2 = ({zizj}) and J/J2 ∼=

⊕
i(zi mod J2) =⊕

iB dti. Similarly, for B = A[{ti : i ∈ I}] for an index I, we have ΩB/A =⊕
i∈I B dti. Any A-algebra B is canonically a quotient of an A-algebra of this

form by factoring A[{tb : b ∈ B}].

What’s next? Well, are we even doing algebra if exact sequence doesn’t
make an appearance.

Proposition 1.4. Let A→ B → B/I = C, then

I/I2 ΩB/A ⊗B C ΩC/A 0
δ:b 7→db⊗1

is an exact sequence of C-modules.

Proposition 1.5. Let A→ B → C, then

ΩB/A ⊗B C ΩC/A ΩC/B 0

is an exact sequence of C-modules.

The proofs are simple verifications and left as exercises.

Example 1.2. Suppose L/K is a finite extension of fields, then ΩL/K = 0 iff
L/K is separable. Indeed, if we let K1 be an intermediate subfield with K1/K
separable and L/K1 purely inseparable, then by primitive element theorem we
have K1 = K(α) ∼= K[t]/(g(t)) for some g ∈ K[t] irreducible and g(α) =
0, g′(α) ̸= 0. Using Proposition 1.4 on K → K[t] → K1 gives ΩK1/K = 0 as
g′(α) ̸= 0. If L = K1, then ΩL/K = ΩL/K1

= 0 by Proposition 1.5. If L ̸= K1,
then there is some K1 ⊂ K2 ⊊ L = K2(β) with β

p = b ∈ K2 where p = charK.
We then have ΩL/K2

= Ldt/Lf ′(t) dt = Ldβ ̸= 0, therefore ΩL/K ̸= 0.
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By the way, why did we want to study Kähler differentials again? Let X be
a smooth manifold, then associated with it is a tangent bundle π : TX → X. If
X is embedded in Rn, then π−1(x) = TxX is the tangent space of X at x ∈ X,
which can be altenratively and intristically defined as the set of R-linear maps
D : C∞(X) → R such that D(fg) = f(x)Dg + g(x)Df . For example, when
X ⊂ Rn is open and x = (0, . . . , 0), the directional derivatives at (0, . . . , 0) would
give the tangent space at x. So indeed TxX is the collection of R-derivations
C∞(X)→ R where R is given the structure of a C∞(X)-module via evaluation.
Algebraizing this then motivates the definition of ΩB/A.
This motivation makes us wonder how one might recover some familiar notions
of (co)tangent spaces from ΩB/A.

Proposition 1.6. Let (A,m) be a local k-algebra whose residue field is k (via
the same inclusion). Then ΩA/k ⊗A k ∼= m/m2.

Proof. Applying Proposition 1.4 to k → A → A/m = k gives a surjection
m/m2 → ΩA/k ⊗A k since Ωk/k = 0.
For the other direction, observe that A = k ⊕ m as k-vector spaces, and R =
A/m2 = k⊕ (m/m2) is a k-algebra with multiplication (a, b)(a′, b′) = (aa′, ab′ +
a′b). D : R→ m/m2, (a, b) 7→ b is an element of Derk(R,m/m

2), hence is induced
by a k-derivation A→ m/m2 via A→ R, i.e. a linear map ΩA/k → m/m2. This
factors through ΩA/k ⊗A k → m/m2 which gives the inverse.

Let’s sheafify all these as we ultimately want to talk about geometry. Let
f : X → Y be a morphism of schemes. We want to define a quasicoherent sheaf
ΩX/Y of OX -modules on X and a map d : OX → ΩX/Y which is f−1OY -linear
and on local sections satisfy d(ss′) = sds′ + s′ ds and d(s) = 0 for any local
section of f−1OY .
There are a few equivalent ways to formulate this. For open affines U =
SpecB ⊂ X,V = SpecA ⊂ Y with f(U) ⊂ V , we can identify ΩX/Y |U = Ω̃B/A,
the quasicoherent OU induced by ΩB/A. Since ΩB/A is compatible with locali-
sations, this glue to define a quasicoherent OX -module and the maps d : B →
ΩB/A induce a map d : OX → ΩX/Y satisfying the desired properties.
Another way to do this is the following: Recall ΩB/A

∼= J/J2 where J =
ker(B⊗AB → B). The map B⊗AB → B induces a map SpecB → SpecB⊗A

B = SpecB ×SpecA SpecB which is the diagonal map. This inspires us to do
the following: Consider the diagonal morphism ∆ = ∆X/Y : X → X ×Y X
which is an immersion (i.e. factors as ∆ = j ◦ i where i : X → U is a closed
immersion and j : U → X ×Y X is an open immersion). Let IX/U be the ideal
sheaf of i. We can then define ΩX/Y = i∗(IX/U/I

2
X/U ). This is quasicoherent

since IX/U is a quasicoherent sheaf of ideals (and i is a closed immersion). It’s
clear that these two constructions coincide.
The exact sequences we had before also have sheafified forms. Suppose i : Z →
X is a closed subscheme defined by a quasicoherent sheaf of ideals I ⊂ OX .
Then

I /I 2 i∗ΩX/Y ΩZ/Y 0

is exact, where i∗ΩX/Y = i−1ΩX/Y ⊗OZ is the module pullback. Moreover, if
X → Y → S are morphisms (with f : X → Y ), then

f∗ΩY/S ΩX/S ΩX/Y 0
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is also exact.
Let k be a field and X a k-scheme. We define the cotangent space to X at
x ∈ X to be ΩX/k(x) = ΩX/k,x ⊗OX,x

k(x), which is a k(x)-vector space. If in
addition that k(x) = k (via the k-scheme structure), then ΩX/k(x) ∼= mx/m

2
x

where mx is the maximal ideal of OX,x.

Definition 1.8. Let X be a k-scheme and suppose x ∈ X has k(x) = k. The
tangent space of X at x is TX,x = Homk(ΩX/k(x), k).

Proposition 1.7. There is a canonical bijection

TX,x
∼=
{
morphisms of k-schemes f : Spec k[ϵ]/(ϵ2)→ X with image x

}
k[ϵ]/(ϵ2) is known as the ring of dual numbers of k. It has a unique prime

ideal (ϵ) at which the local ring is k[ϵ]/(ϵ2).

Proof. To give such a morphism f is to give a local k-algebra homomorphism
ϕ : OX,x → k[ϵ]/(ϵ2). As OX,x = k ⊕mx (noting k(x) = k), ϕ is determined by
ϕ|mx

: mx → kϵ ≤ k[ϵ]/(ϵ2). Since ϵ2 = 0, we have ϕ(m2
x) = 0, so ϕ|mx

factors
through an element of Homk(mx/m

2
x, kϵ)

∼= Homk(mx/m
2
x, k).

1.3 The Functor of Points

The underlying topological space of a scheme is notoriously unintuitive. For
(ai) ∈ kn, (T1− a1, . . . , Tn− an) is always a closed point in An

k , but when k ̸= k̄
there can be other closed points.
Also, the topological space of X ×S Y is not usually the (topological) fibre
products of the underlying spaces. There are cases where fibre product is well-
behaved, e.g. the fibre of a morphism. But if we take X = Y = SpecC, S =
SpecQ, X ×S Y has uncountably many points despite X,Y, S all only have one
point. If k ̸= k̄ and we take X = Y = A1

k, S = Spec k, then the closed points of
X ×S Y = A2

k aren’t even the product of closed points of A1
k with itself.

However, there is a good sense in which we can realise the “points” of X × Y
can be viewed as the “product” of the “points” of X and the “points” of Y .
Denote the category of schemes by (Sch), the category of (unital commutative)
rings by (Rings) and the category of sets by (Sets).

Definition 1.9. For schemes X,Y , the collection of Y -valued points in X
is X(Y ) = Hom(Sch)(Y,X). When Y = SpecR is affine we write X(R) =
X(SpecR) (the “R-valued points”).

Example 1.3. 1. Let X = An
Z, then

X(R) = Hom(Sch)(SpecR,An
Z) = Hom(Rings)(Z[T1, . . . , Tn], R) = Rn

2. Every scheme X has a “tautological” (or “universal”) point idX : X → X.

Definition 1.10. The functor of points of X is the functor ĥX : (Sch)op →
(Sets) via Y 7→ X(Y ) and (f : Y ′ → Y ) 7→ (X(Y )→ X(Y ′), g 7→ g ◦ f).

ĥX is also called the presheaf associated to X, since a presheaf on a topolog-
ical space can be viewed as a contravariant functor from the category of open
sets on the topological space to the category of abelian groups. The notion of a
morphisms between presheaves also has a category theoretic generalisation:
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Definition 1.11. Suppose F ,G : Cop → D are functors. A morphism (or
natural transformation) ϕ : F → G is a collection of morphisms ϕY : F(Y ) →
G(Y ) such that

F(Y ) G(Y )

F(Y ′) G(Y ′)

ϕY

F(g) G(g)

ϕY ′

commutes for every g : Y ′ → Y .

Lemma 1.8 (Yoneda Lemma for (Sch)). If X,X ′ are schemes, Hom(Sch)(X
′, X)

is in bijection with Nat(ĥX′ , ĥX).

Here, Nat(ĥX′ , ĥX) is the collection of natural transformations from ĥX′ to

ĥX .

Proof. For a morphism f : X ′ → X, we identify the natural transformation
given by ϕY : X ′(Y )→ X(Y ), g 7→ f ◦ g. Conversely, a natural transformation

ϕ : ĥX′ → ĥX gives rise to the morphism ϕX′(idX′).

The same proof works in any locally small category, not just schemes. But
in the case of schemes, we have some extra structure to work with which gives
rise to a more intricate version of Yoneda lemma.

Definition 1.12. hX : (Rings)→ (Sets) is the restriction of ĥX to affine schemes
(recall that Spec is an equivalence of categories from (Rings) to the opposite
category of the category of affine schemes).

Proposition 1.9. Hom(Sch)(X
′, X) is in bijection with Nat(hX′ , hX).

Proof. Morphisms Y → X are determined by their restrictions to affine pieces
of Y .

For a scheme S, let (Sch/S) be the category of S-schemes (i.e. objects are
morphisms X → S and morphisms are morphisms X ′ → X commuting with
X → S,X ′ → S). Let (Aff/S) be the subcategory of affine S-schemes. We can

similarly define ĥX/S : (Sch/S)op → (Sets) and ĥ : (Aff/S)op → (Sets) and they
will have the same properties we described above.
An S-scheme X admits a universal point idX : X → X and a “universal pair
of points” pr1,pr2 : X ×S X → S. Let’s use this to explain why the diagonal
morphism sneaks in when we are trying to define Kähler differentials.
Imagine we are in the eighteenth century and we want to do calculus. For a point
x, we are often interested in x′ = x+ δx for some “infinitesimal” δx, whatever
it means. Accompanying this is δf = f(x′) − f(x) which in turn determines
a “common ration” δf/δx. In algebraic geometry, infinitesimals are mimicked
with a square zero. For an S-scheme T and a closed subscheme T0 ⊂ T given by
the ideal sheaf I = IT0/T with I 2 = 0 (in particular, the morphism T0 ↪→ T
is a homeomorphism). One example of this is T0 = Spec k, T = Spec k[ϵ]/(ϵ2).
Suppose x, x′ ∈ X(T ) = HomS(T,X) have x′|T0

= x|T0
(“infinitesimal close
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points”), then for a local section f ofOX can be associated with δf = x′∗f−x∗f .

T X ×S X

T0 X

(x,x′)

∆X/S

Let J be the ideal sheaf of ∆X/S , then (x, x′)∗J ⊂ I and thus (x, x′)∗J 2 =

0. That is, (x, x′) factors through a morphism T → ∆
(1)
X/S via pr1,pr2, where

∆
(1)
X/S (the “first infinitesimal neighbourhood of the diagonal”) is the locally

closed subscheme of X ×S X with ideal sheaf J 2 (we can also define ∆
(n)
X/S

by replacing J 2 with J n+1). This means that pr1,pr2 : ∆
(1)
X/S → X is

the universal pair of infintesimally close points. Thus δf = x′∗f − x∗f =
(x, x′)∗(pr∗2 f−pr∗1 f) = (x, x′)∗(1⊗f−f⊗1 mod J 2). But 1⊗f−f⊗1 mod J 2

is just df !
Let’s go back to the main story line.

Definition 1.13. Suppose C,D are (locally small) categories. A functor F :
C → D is faithful if the natural map HomC(X,Y ) → HomD(FX,FY ) induced
by it is injective. If in addition that it is surjective, we say it is fully faithful.

So what (the general version of) Yoneda lemma is really saying is that the
functor X 7→ HomC(−, X) (with the latter considered as an object in the cate-
gory Funct(Cop, (Sets)) of functors Cop → (Sets)) is fully faithful. In other words,
C can be identified with a full subcategory (i.e. with a subclass of objects and
all the original morphisms between them) of Funct(Cop, (Sets)).

Definition 1.14. A functor F : Cop → (Sets) is represented by an object X
(or simply “representable” if we don’t care about X) of C if there is a natural
isomorphism ϕ : F → Hom(−, X).

Yoneda lemma can then be further rephrased to the statement that the pair
(X,ϕ), if exists, is unique up to unique isomorphism. That is, if (X ′, ϕ′) also
represents F , then there is a unique isomorphism f : X ′ → X such that the
map ϕ−1 ◦ ϕ′ : HomC(−, X ′)→ HomC(−, X) is given by composition with f .

Example 1.4. ForX,Y ∈ (Sch/S), X×SY represents the functor (Sch/S)op →
(Sets), T 7→ X(T )× Y (T ). This “fixes” the problem with products of schemes.

The natural question, then, is to ask exactly which functors (Sch)op → (Sets)
is representable. A version of this question is known as descent. If Y =

⋃
α Uα

is an open cover of a scheme Y , then by glueing of morphisms,

Hom(Sch)(Y,X) ∼= {(fα : Uα → X)α : ∀α, β, fα|Uα∩Uβ
= fβ |Uα∩Uβ

}

That is,

X(Y )
∏

αX(Uα)
∏

α,β X(Uα ∩ Uβ)

is an equaliser. But this looks like it’s just saying that ĥX is a sheaf!
Consequently, F ≡ Z is not representable.
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1.4 Étale Morphisms

Example 1.5. Let X ⊂ C2 be a conic given by the equation y = x2. We get
a map X → C given by (x, y) 7→ y. At any p ̸= (0, 0) in X, f is a local home-
omorphism under the complex topology, and the theory of branched covers in
Euclidean spaces is more or less based on such ideas.
However, being algebraic geometers, we don’t have the luxury of complex topol-
ogy. The one we do have, that is Zariski topology, is far too big for such kind
of statements to generalise.
However, if you squint hard enough, one of the ways one justify that f is a local
homeomorphism is by observing that dy/dx|p ̸= 0 whenever p ̸= (0, 0) – this is
a algebraic statement! We will use this idea to define étale morphisms which
does a pretty good job at capturing the geometric picture we had for coverings.

As usual, we will start with a terrible definition, and work our ways towards
a proper one.

Definition 1.15. A morphism f : X → Y is étale at x ∈ X if there are
affine opens U = SpecB ∋ x, V = SpecA ∋ f(x) such that f(U) ⊂ V and
there is an identification B = A[T1, . . . , Tn]/I via f |U where I = (g1, . . . , gn)
and det J ∈ A[T1, . . . , Tn] does not restrict to 0 on k(x) (via the canonical
homomorphism to B) where J = (∂gj/∂Ti)ij is the Jacobian.

You can see why this is a bad definition: The sheer amount of different
possible choices there is both alarming and enraging. Nonetheless, we shall
explore some examples and properties of étale morphisms defined in this way
before we move on to a better definition.

Example 1.6. To recover our first example, we can take A = C[T0] and B =
C[T0, T1]/(T 2

1 − T0) = A[T1]/(g1) where g1 = T 2
1 − T0. J = ∂g1/∂T1 = 2T1 is

invertible at every closed point p ̸= (0, 0), hence étale at every such point. It’s
not hard to see that it is also étale at the generic point, which is a phenomenon
that generalises, we we will see later.

Any open immersions are étale, as such morphisms are local isomorphisms
and thus we can take B = A. It’s also clear that all étale morphisms are locally
of finite presentation.

Proposition 1.10. {x ∈ X : f étale at x} is open.

Proof. Suppose f is étale at x and let A,B be as in the definition, then f is
étale at every x′ ∈ D(J mod I) ∼= SpecB[1/J ].

Similarly, being étale is a local property both on the source and on the target.
One should also expect that being an étale morphism also has hardly anything
to do with the global properties (e.g. quasicompactness, separatedness) of the
morphism.

Example 1.7. Let X be the line with two origins and f : X → A1 be the
natural projection, then f is étale as it’s a local isomorphism, but it’s in general
not separated.

Proposition 1.11. Suppose f : X → Y is étale and Y ′ → Y is a morphism,
then the base change f ′ : X ×Y Y ′ → Y ′ is also étale.
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Proof. If f is locally given by B = A[T1, . . . , Tn]/(g1, . . . , gn), then f
′ is locally

given by B = A′[T1, . . . , Tn]/(ḡ1, . . . , ḡn) where ḡi are the respective images of
gi under the base change.

Here comes a property that will be crucial to motivate a better definition of
étale morphisms

Proposition 1.12. If f is étale, then ΩX/Y = 0.

Proof. Suppose x ∈ X and f is locally given as B = A[T1, . . . , Tn]/(g1, . . . , gn),

then ΩB/A = (
⊕

iB dTi) /
(∑

j B dgj

)
, therefore

ΩX/Y,x = ΩB/A ⊗B Bx = coker

((
∂gj
∂Ti

)
ij

: Bn
x → Bn

x

)
= 0

by hypothesis.

As per tradition of defining a new kind of maps, we want to know if it
behaves well under composition.

Proposition 1.13. Composition of étale maps is étale.

Proof. If B = A[T1, . . . , Tn]/(g1, . . . , gn), C = B[Tn+1, . . . , Tm]/(gn+1, . . . , gm)
are étale, then we have the finite presentation C = A[T1, . . . , Tm]/(g1, . . . , gm)
and its Jacobian would be upper block-diagonal with two diagonal blocks that
are the Jacobians of B/A and C/B respectively.

Example 1.8. Let L/K be a field extension, we claim that SpecL→ SpecK is
étale if and only if L/K is finite and separable. The “if” part is clear by primitive
element theorem. For the “only if” part, the condition of being étale means
that L = K[T1, . . . , Tn]/(g1, . . . , gn). As L is a field, (g1, . . . , gn) is maximal and
hence L/K is finite by Noether normalisation. Separability on the other hand
follows from Proposition 1.12.

Proposition 1.14. If f : X → Y is étale, then for all y ∈ Y the fibre f−1(y)
is a disjoint union of spectra of finite separable extensions of k(y).

Proof. Proposition 1.11 means that we need only to consider the case Y =
Spec k. As f : X → Spec k is étale, it is in particular locally of finite type.
Suppose x ∈ X is closed and consider X ′ = X ×Spec k k

′ ∋ x′ = (x, ∗) where
k′ = k(x). ΩX′/k = 0 as X ′ is étale over Spec k′, so ΩX′/k′(x′) ∼= mx′/m2

x′ = 0.
Then mx′ = 0 as OX′,x′ is Noetherian, i.e. OX′,x′ = k′, thus OX,x = k′. This
means that locally X = SpecB where B is a finite type k-algebra of dimension
0, i.e. a finite product of its local rings. So B is a finite product of fields, and
hence X is a disjoint union of spectra of fields, all of which have to be finite
separable extensions of k = k(y) by the previous example.

Example 1.9. Suppose L/K is a finite separable extension of local fields, then
SpecOL → SpecOK is étale iff L/K is unramified, i.e. we can choose the same
uniformiser πL = πK and the extension of residue fields OK/(πK) → OL/(πL)
is separable. We know the “only if” part from the last example. The “if” part
follows from the fact that if L/K is unramified then OL = OK [T ]/(g) where g
is separable modulo πK .
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Definition 1.16. A ring homomorphism A → B is called étale if SpecB →
SpecA is étale.

It is not obvious that B has to have finite presentation over A for it to be
étale, but it is true.
Let B = P/I where P = A[{Tα}] and I ≤ P is an ideal. Recall from Proposition
1.4 that we have an exact sequence

I ⊗P B = I/I2 ΩP/A ⊗P B ΩB/A 0δ

To be precise, δ takes f mod I2 to df ⊗ 1. We also know that ΩP/A ⊗P B =⊕
αB(dTα ⊗ 1) is a free B-module.

Definition 1.17. We say B/A is basic étale if there exists a presentation B =
A[T1, . . . , Tn]/(g1, . . . , gn) with detJ invertible in B.

Proposition 1.15. B/A is basic étale iff there exists a presentation B = P/I
where P is a finite type A-polynomial algebra and I ≤ P is finitely generated
such that δ is an isomorphism.

Proof. Suppose B/A is basic étale, then we get

Bn I/I2 ΩP/A ⊗B =
⊕n

i=1B(dTi ⊗ 1)
(gj) δ

The composite of these maps is invertible by hypothesis, which then forces δ to
be an isomorphism as (gj) is surjective.
Conversely, suppose P = A[T1, . . . , Tn] and δ is an isomorphism, then I/I2 is
free of rank n. Suppose g1, . . . , gn ∈ I map to a B-basis of T/T 2. Let M =
I/(g1, . . . , gn), then IM = (I2+(g1, . . . , gn))/(g1, . . . , gn) =M . By Nakayama’s
lemma, there is some h ∈ 1 + I with hM = 0, hence Ih = (g1, . . . , gn)h, so

B = Bh = Ph/Ih = Ph/(g1, . . . , gn) = A[T0, . . . , Tn]/(hT0 − 1, g1, . . . , gn)

which is basic étale.

Corollary 1.16. Let f : X → Y be locally of finite presentation, then f is étale
iff it is locally isomorphic to SpecB/ SpecA where the second statement in the
preceding proposition holds.

coker δ = ΩB/A doesn’t depend on presentation in general. In fact, ker δ
doesn’t depend on presentation either. Given two presentations I → P →
B, I ′ → P ′ → B′, then there is some ϕ : P → P ′ such that

I P B

I ′ P ′

ϕ

commutes since P is a polynomial algebra. Then necessarily ϕ(I) ⊂ I ′. This
gives

I/I2 ΩP/A ⊗P B ΩB/A 0

I ′/(I ′)2 ΩP ′/A ⊗P ′ B ΩB/A 0

δ

∼=

δ′

11



By some commmutative algebra, this diagram induces an isomorphism ker δ ∼=
ker δ′, which doesn’t even depend on ϕ. Thus ΓB/A = ker δ = ker δ′ is well-
defined up to unique isomorphism.

1.5 Smooth Morphisms

On an intuitive level, smooth morphisms should be things that are “locally
analytically” isomorphic to projections Rm × Y → Y,Cm × Y → Y .

Proposition 1.17. Let f : X → Y be a morphism and x ∈ X, d ≥ 0. Then the
followings are equivalent:
(i) There exists an open neighbourhood U ⊂ X of x and p : U → Ad

Z×SpecZ Y =
Ad

Y étale at x such that f |U = prY ◦p.
(ii) There are open affines U = SpecB ⊂ X,V = SpecA ⊂ Y with x ∈
U, f(U) ⊂ V such that B has a presentation B = A[T1, . . . , Tn+d]/(g1, . . . , gn)
with the Jacobian having full rank n.

Definition 1.18. If any of the above happens, we say f is smooth at x of
relative dimension d, and smooth if it is smooth at all x ∈ X.

Proof. (ii) =⇒ (i): By reordering the variables, we may assume WLOG that
∆ = det((∂gj/∂Ti)1≤i≤n,1≤j≤n) ̸= 0 at x. Consider p : U = SpecB → Ad

A ⊂ Ad
Y

given by A′ = A[Tn+1, . . . , Tn+d] → B = A′[T1, . . . , Tn]/(g1, . . . , gn) which is
étale at x over A′.
(i) =⇒ (ii): Shrinking U if necessary, we may assume WLOG that p(U) ⊂
An

V for some affine V = SpecA ⊂ Y , and that there is a distinguished open
V ′ = D(h) = SpecA′ ⊂ Ad

V for some h ∈ A[T1, . . . , Td], A
′ = A[T1, . . . , Td]h

such that B = A′[Td+1, . . . , Td+n]/(g1, . . . , gn) has its Jacobian invertible at x.
Then B = A[T0, T1, . . . , Tn+d]/(g0 = hT0 − 1, g1, . . . , gn) satisfies (ii).

Definition 1.19. A nonsingular variety over a field k is a smooth separated
k-scheme of finite type.

Proposition 1.18. A morphism f : X → Y is smooth iff it is covered by
SpecB → SpecA where B = P/I = A[T1, . . . , Tn]/I is a finite presentation of
A such that the map δ : I/I2 → ΩP/A ⊗P B is a split injection.

Proof. Suppose f is smooth. Since the conditions are local, we may assume X =
SpecB is étale over An

A = SpecP0, P0 = A[T1, . . . , Td] and P is a polynomial
algebra over P0. Then I/I2 ∼= ΩP/P0

⊗P B as X → Ad
A is étale. And since

ΩP/A
∼= ΩP/P0

⊕
⊕d

i=1 P dTi we get a split injection.
Conversely, suppose A → B = P/I is such that δ is a split injection I/I2 ↪→
ΩP/A ⊗P B =

⊕n
i=1B(dTi ⊗ 1). For x ∈ SpecB, after possibly reordering Ti

we may assume that dT1 ⊗ 1, . . . ,dTd ⊗ 1 generate a complement of I/I2 in a
neighbourhood SpecBh of x. Replacing P by P [T0] and I by (I, hT0−1) allows

us to further reduce to the case where ΩP/A ⊗P B = I/I2 ⊕
⊕d

i=1B(dTi ⊗ 1).
Now let P0 = A[T1, . . . , Td], then I/I

2 ∼= ΩP/P0
⊗P B, thus SpecB is étale over

SpecP0 = Ad
A. Then SpecB is smooth of relative dimension d at x and d is the

rank of ΩP/A ⊗B/(I/I2), which is just the rank of ΩX/Y,x.

Remark. This means that ΩX/Y = coker δ is locally free if X/Y is smooth. The
proof also shows that if f is smooth of relative dimension d then ΩX/Y has rank
d.
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Corollary 1.19. Suppose X → Spec k is smooth of relative dimension d and
x ∈ X is a closed point, then mx/m

2
x has dimension d.

1.6 Infinitesimal Criteria

As promised, we now turn to better criteria for a map to be étale and smooth.
There are two motivations for this. Firstly, a étale morphism is morally a local
isomorphism. It is then very tempting to characterise this from the level of
tangent space. This is however a condition too weak to work, so we turn to
looking at higher order neighbourhoods (“infinitesimally close points of X and
those of Y ”).
Another motivation comes from a more algebraic point of view. Smooth mor-
phisms want to mimic the map An

Y = SpecA[T1, . . . , Td] → Y = SpecA. The
universal property of polynomial algebras is that they lift surjections of A-
algebras. If we weaken this and only look at surjections with nilpotent kernel,
we actually do end up with a criterion for smoothness.

Definition 1.20. An A-algebra B is formally smooth if for any surjective A-
algebra homomorphism R → R0 with square-zero kernel, the induced map
HomA(B,R)→ HomA(B,R0) is surjective.

B R0

A R

∃

Definition 1.21. A morphism f : X → Y is formally smooth if for every affine
Y -scheme Z = SpecR and closed subscheme Z0 ⊂ Z defined by a square-zero
ideal sheaf, HomY (Z,X)→ HomY (Z0, X) is surjective.

X Z0

Y Z
∃

Remark. If B/A is formally smooth, then for every surjective A-algebra ho-
momorphism R → R0 with nilpotent kernel, HomA(B,R) → HomA(B,R0) is
surjective. Indeed, if I = ker(R→ R0) is such that IM = 0, then we get a chain

of surjections R = R/I2
k → · · · → R/I4 → R/I2 → R0, each with a square-zero

kernel.

Analogously,

Definition 1.22. A → B (resp. X → Y ) is formally unramified if the map
HomA(B,R) → HomA(B,R0) (resp. HomY (Z,X) → HomY (Z0, X)) as in be-
fore is injective. It is formally étale if the map is an isomorphism.

Remark. 1. If f is formally étale, then the map we considered is in fact bijective
for every Z, not necessarily affine. Indeed, for general Z, we can cover it by
open affines. Any morphism Z0 → X then has a unique extension to Z on each
of these affines, so they glue to give a global morphism.
2. To check f is formally smooth, it suffices to show the surjectivity locally.
Suppose Z =

⋃
i Vi, then r : Z0 → X lifts to r̃i : Vi → X. They don’t
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necessarily glue (contrary to the étale case) due to the lack of uniqueness, but if
we consider r̃i, r̃j should differ by a section of Hom(r∗ΩX/Y ,IZ0/Z) (where Hom

denotes the sheaf Hom). Thus we get a Čech 1-cocycle on Z0 with coefficients in
Hom(r∗ΩX/Y ,IZ0/Z). But Z0 is affine, so H1(Z0,Hom(r∗ΩX/Y ,IZ0/Z)) = 0
and therefore we can modify r̃i’s by the coboundary to get a global lifting.

Proposition 1.20. Suppose B = P/I is a presentation where P is a polynomial
algebra over A not necessarily of finite type. As usual consider δ : I/I2 →
ΩP/A ⊗B. Then B/A is
(i) Formally smooth if δ is a split injection.
(ii) Formally étale if δ is an isomorphism.
(iii) Formally unramified if δ is surjective (i.e. coker δ = ΩB/A = 0).

Roughly speaking, ker δ is the obstruction to the existence of an infinitesimal
life, and coker δ measures how many lifts there are, if one exists.

Proof. Let’s prove (iii). B/A is formally unramified iff

B R0 = R/I, I2 = 0

R

ϕϕ′

implies ϕ = ϕ′. Let J = ker(B ⊗A B → B). The diagram

B B

R B ⊗A B/J
2

=

ϕ

ϕ′

ϕ⊗ϕ′

then gives the result.

Definition 1.23. We say f is unramified if ΩX/Y = 0 and f is locally of finite
type (“Raynaud condition”).

Theorem 1.21. Suppose f : X → Y is a morphism, then f is smooth (resp.
étale) iff f is formally smooth (resp. formally étale) and locally of finite pre-
sentation. f is unramified iff f is formally unramified and locally of finite type.

The last part of the theorem is just the last part of the preceding proposition.
Why do we only want the morphism to be locally of finite type, instead of locally
of finite presentation? It’s because we want to weaken our condition so that
every closed immersion is unramified. Indeed, not every closed immersion is
locally of finite presentation, e.g. the immersion of the origin into A∞

k .

Lemma 1.22. Suppose C is an A-algebra and I ⊂ C an ideal. Let Ck = C/Ik+1

for k ≥ 0, then for all k ≥ 1 we have ΩC/A ⊗C C0
∼= ΩCk/A ⊗C C0.

Proof. We have the exact sequence

Ik+1/I2k+2 ΩC/A ⊗C Ck ΩCk/A 0

14



Now −⊗Ck
C0 is a right-exact functor, so we get another exact sequence.

Ik+1 ⊗C C0 ΩC/A ⊗C C0 ΩCk/A ⊗Ck
C0 0

where the first arrow is essentially f0 · · · fk⊗1 7→
∑k

i=1 dfi⊗(f0 · · · (̂i) · · · fk mod
I) = 0, so we are done.

Proof of Theorem 1.21. We’ll prove the statement about smoothness (which,
incidentally, also includes the idea of proving part (i) of the Proposition 1.20).
The other parts are similar.
We may assume that Z0 = SpecR0 → X factors through SpecB ⊂ X with
B = A[T1, . . . , Tn]/(g1, . . . , gm),m ≤ n and (WLOG) det((∂gj/∂Ti)1≤i,j≤m) is
invertible in B. We thus have (ai) ∈ Rn

0 such that gj(a1, . . . , an) = 0 for all j.
Suppose Z = SpecR,R0 = R/I, I2 = 0 To prove the “only if” part, it suffcies to
produce some (ãi) ∈ Rn with gj(ã1, . . . ãn) = 0. This sounds just like Hensel’s
lemma.
Pick any (a′i) ∈ Rn such that a′i mod I = ai, then gj(a

′
1, . . . , a

′
n) = cj ∈ I. As

I2 = 0, for any x1, . . . , xn ∈ I, we have

gj(a
′
1 + x1, . . . , a

′
n + xn) = gj(a

′
1, . . . , a

′
n) +

n∑
i=1

xi
∂gj
∂Ti

(a′1, . . . , a
′
n)

As det((∂gj/∂Ti)1≤i,j≤m) is invertible, it’s possible to choose x1, . . . , xn (with
xm+1, . . . , xn all zero) such that this expression vanishes for all j. Taking ãi =
a′i + xi then gives what we desired.
For the “if” part, we’ll show that if SpecB/ SpecA is formally smooth, then
for any presentation B = P/J with P a polynomial algebra over A, δ is a split
injection. By the preceding lemma, ΩP/A⊗PB ∼= ΩP1/A⊗PB where P1 = P/J2.
So it suffices to prove that δ : J1 = J/J2 → ΩP1/A ⊗P1

B is a split injection.
Consider the diagram

B B

A P1

=

ker=J1,J
2
1=0

where the existence of B → P1 is guaranteed by formal smoothness. This gives
the splitting P1

∼=A B ⊕ J1 where B ⊕ J1 has multiplication (b, f)(b′, f ′) =
(bb′, f ′b + fb′). It’s then easy to check that P1

∼= B ⊕ J1 → J1 is an A-
derivation, and therefore induces a unique map of P1-modules σ : ΩP1/A → J1
via d(b, f) 7→ f . This factors through σ̄ : ΩP1/A ⊗P1 B → J1 and σ̄ ◦ δ = id,
which means that δ is a split injection.

Remark. In case you are gonna read some French literature, the French for
“smooth” is “lisse”, for “unramified” is “net/nette” and for “étale” is, of course,
“étale”.

Suppose p : X → Y, q : Y → W are morphisms and q is étale. We ex-
pect p and q ◦ p to have some common properties seeing that q is supposed to
mimic a local isomorphism (a phenomenon that often described with the word
“permanence”). And they do, oftentimes.

Proposition 1.23. If q ◦ p is étale (resp. smooth), so is p.
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Remark. If q ◦ p is unramified, so would p be. But this is apparently too easy
to be part of the proposition.

Proof. Might as well assume everything is affine. Suppose W = SpecA, Y =
SpecB,X = SpecC. Then p, q induces A → B → C where both B,C are
finitely presented over A, thus C is also finitely presented over B. So it’s enough
to show that p is formally étale (resp. smooth).
Suppose

Z0 X

Z Y

W

s

i p

r

r̃

q

where Z0 ⊂ Z = SpecR is defined by a square-zero ideal of R. Since X/W is
formally smooth, there is some r̃ : Z → X with q◦p◦ r̃ = q◦r and r̃◦i = s. Then
HomW (Z, Y ) ∼= HomW (Z0, Y ) via i since q is étale. But p ◦ r̃ ◦ i = p ◦ s = r ◦ i,
so p ◦ r̃ = r and we are done.

Proposition 1.24. Let i : Y ↪→ X be a closed immersion, then i is étale iff
X = Y ⊔Z for a closed subscheme Z ⊂ X (i.e. i is in fact an open immersion).

Proof. The “if” part is clear. As for the “only if” direction, observe that if i is
étale then it is locally of finite presentation. Assume that i : Y = Spec(A/I) ↪→
SpecA = X with I a finitely generated ideal (so the presentation is P = A →
A/I). Then as i is étale, I/I2 ∼= ΩP/A ⊗P (P/I) = 0, so I = I2. Nakayama’s
lemma then gives some f ∈ I with (1 + f)I = 0. Then A → A1+f induces
an isomorphism A/I ∼= A1+f , which means that i is an open immersion onto
SpecA1+f ⊂ X.

Remark. More generally, we can replace the condition of i being a closed im-
mersion by it being radicial, in the sense that i is injective on points and
k(x)/k(f(x)) is purely inseparable.

Theorem 1.25. Suppose X,Y are locally Noetherian and let f : X → Y be a
morphism that’s locally of finite presentation. Suppose x ∈ X has k(x) ∼= k(y)
via the induced map, where y = f(x). Then f is étale at x iff ÔY,y

∼= ÔX,x

(“analytic isomorphism”).

Proof. We might as well assume that f is étale since the statement is local at
x. Recall that ÔX,x = lim←−n

OX,x/m
n
x . Let n ≥ 1 and Yn = SpecAn, An =

OY,y/m
n
y . Let Xn = X ×Y Yn = SpecBn which is étale over Yn. Thus there is

a lifting s making

Xn Spec k(x)

Yn Yn

f

x

y

=

s

commute. So f ◦ s = idYn
, s∗ ◦ f∗ = idAn

(via Xn, Bn respectively). Thus s is
a closed immersion and is also étale. Therefore Xn = Yn ⊔Zn as in the preced-
ing proposition. So OY,y/m

n
y = OYn,y

∼= OXn,x = OX,x/m
n
yOX,x. For n = 1,
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we’ve got the isomorphism OX,x/myOX,x = OY,y/my, so indeed mx = myOX,x.
Therefore OY,y/m

n
y
∼= OX,x/m

n
x for all n, giving exactly what we want.

Conversely, suppose ÔX,x
∼= ÔY,y, then mx = myOX,x. Thus OX,x/myOX,x =

k(x) = k(y) which means that ΩX/Y ⊗ k(x) = 0, i.e. ΩX/Y = 0 in a neigh-
bourhood of x. Assuming X = SpecB → Y = SpecA with B = P/I a finite
presentation, then ΩB/A=0.
So δ : I/I2 → ΩP/A ⊗P B =

⊕n
i=1(dTi ⊗ 1)B is surjective. Choose gi ∈ I such

that δ(gi mod I2) = dTi ⊗ 1. Then (∂gj/∂Ti) is certainly invertible in B, so
X ′ = SpecP/(g1, . . . , gn)→ Y is étale.
Let’s look at the local rings. OX,x ⊂ ÔX,x as our schemes are Noetherian, which
gives

OX,x OX′,x

ÔX,x ÔX′,x

ÔY,y

=
∼=

That is, OX′,x → OX,x is injective. But X → X ′ is supposed to be a closed
immersion, so OX′,x

∼= OX,x. This actually means that X → X ′ is locally an
isomorphism at x. Indeed, suppose X → X ′ is locally SpecB → SpecA with
B = A/I, then I = (a1, . . . , an) is finitely generated by finite presentation. For
q ∈ SpecB (say with image p ∈ SpecA), we must have I ≤ q, thus I vanishes
under A → Ap → Bq. But this means that I is zero under A → Ap since
Ap ↪→ Bq. So for all j, there is some fi ∈ A \ p with fjaj = 0, showing that I in
fact vanishes under A → Af where f =

∏
i fi. Then Af

∼= Bf , i.e. i is a local
isomorphism.
So X → X ′ is étale at x, which means that f too has to be étale at x.

Corollary 1.26. Suppose X is a k-scheme of finite type and x ∈ X has k(x) =
k. Then X is smooth at x of relative dimension d iff ÔX,x

∼= k[[T1, . . . , Td]].

Proof. For the “only if” part, observe that we have some étale X → Ad
k locally

at x where x is sent WLOG to the origin, then it induces ÔX,x
∼= ÔAd

k,0
=

k[[T1, . . . , Td]]. Conversely, kermx/m
2
x
∼=
⊕

i k(T1 mod m2
x) and any set of gen-

erators for mx/m
2
x gives an isomorphism ÔX,x

∼= k[[T1, . . . Td]]. So WLOG
T ∈ OX,x which then gives X → An

k which is étale at x.

Remark. Any localisation A → S−1A is automatically formally étale, but it’s
not in general étale unless S−1A is finitely presented over A.

Example 1.10. Let’s give an example of a closed immersion that’s formally
étale but not étale.
For a field k, we consider the ring A = k(1, 1, . . .) +

⊕
N k ⊂ kN consisting

of eventually constant k-sequences. One can check that X = SpecA = {xn :
n ∈ N ∪ {∞}} where xn = ker(A → k, (ai)i 7→ an) for n < ∞ and x∞ =
ker(A→ k, (ai)i 7→ limn an) =

⊕
N k. The topological space of X, on the other

hand, is homeomorphic to {1/(n + 1) : n ∈ N} ∪ {0} ⊂ R (the “one-point
compactification of N”, and also the simplest nontrivial profinite set) in the
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natural way (xn 7→ 1/(n+ 1), x∞ 7→ 0).
OX,xn

= k for all x ≤ ∞ and x∞ ∼= Spec k = SpecOX,x∞ ↪→ X is a closed
immersion and is formally étale as a localisation, but not étale since it is not an
open immersion.

1.7 Flatness

Definition 1.24. An R-module M is if any of the followings hold:
(i) The endofunctor −⊗R M on (ModR) is exact, i.e. whenever

0 N1 N2 N3 0

is an exact sequence of R-modules, so is

0 M ⊗R N1 M ⊗R N2 M ⊗R N3 0

(ii) For any I ≤ R, M ⊗R I →M is an injection (i.e. we need only to check the
simplest short exact sequences).
(iii) (“Equational Flatness”) If m1, . . . ,mr ∈ M,a1, . . . , ar ∈ R are such that∑

i aimi0 =, then there exists n1, . . . , ns ∈ M, (bij)1≤i≤n,1≤j≤s ∈ R such that
mi =

∑
j bijnj and

∑
i aibij = 0 for all j.

If M is R-flat (i.e. M is a flat R-module), then Mp is Rp-flat for any
prime p ∈ SpecR. Also, any free R-module is also R-flat. We can refine this
implication with the introduction of more precise algebraic notions.

Definition 1.25. An R-module M is projective if M ⊕M ′ is a free R-module
for some R-module M ′.
M is locally free if the quasicoherent OX -module M̃ (where X = SpecR) is
locally free, i.e. there are f1, . . . , fr ∈ R such that (f1, . . . , fr) = R and Mfi is
a free Rfi-module.
M is punctually (or stalkwise) free if Mp is a free Rp-module for all p ∈ SpecR.

We then have the implication chains (free) =⇒ (projective) =⇒ (flat) and
(free) =⇒ (locally free) =⇒ (punctually free) =⇒ (flat). All the implica-
tions are strict in general.
If M is punctually free and finitely presented, then it is certainly locally free.
Without finite presentation, even for R = Z, there can be punctually free mod-
ules that are not locally free, e.g. M = {m/n ∈ Q : n square-free} (which has
M(p) = p−1Z(p)).
Indeed, if M is finite (i.e. finitely generated), then we have a lot of reversed
arrows (projective) ⇐⇒ (locally free) ⇐⇒ (flat and finitely presented) (note
that if R is Noetherian then any flat R-module is finitely presented).
If R is local, then (free) ⇐⇒ (locally free) ⇐⇒ (projective) =⇒ (flat), and
(projective) ⇐= (flat) if in addition that M is finite.

Definition 1.26. An A-algebra B is flat if it is flat as an A-module.
A morphism f : X → Y is flat if it is locally covered by SpecB → SpecA with
A→ B flat.

Morally, flat morphisms carry the ideal of a “continuously ranging family”.

Proposition 1.27. Suppose f : X → Y is of finite presentation. Then f is étale
iff f is flat and unramified iff f is flat with étale fibres Xy → Spec k(y), y ∈ Y .
f is smooth iff f is flat with smooth fibres.
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2 Group Schemes

2.1 Definition and Examples

Example 2.1. A1
k should morally be a group under “addition on k”, but it

can’t work since you don’t know what to do with the generic point (0) and (if
k ̸= k̄) there are more points than k. However, if R is a k-algebra, A1

k(R) = R
has the structure of a group.

We want to define group schemes in some sort of functorial languages.

Definition 2.1. A group scheme over S (an “S-group scheme”) is an S-scheme
G together with an S-morphism m : G ×S G → G such that for any S-scheme
T , mT : G(T )×G(T ) = (G×S G)(T )→ G(T ) maks G(T ) a group.

By the usual covering argument, it suffices to check the cases where T is
affine. When S is unspecified, we usually imply S = SpecZ.

Example 2.2. The SpecZ-scheme Ga = SpecZ[T ] is a group scheme with m
induced from Z[T ] 7→ Z[T ]⊗Z Z[T ] = Z[T1, T2], T 7→ T1 + T2. Then for any ring
R, Ga(R) = R is made into a group by m which is just the additive group of R.

Suppose T ′ → T is an S-morphism, then we’ve got the commutative diagram

G(T )×G(T ) = (G×S G)(T ) G(T )

G(T ′)×G(T ′) = (G×S G)(T
′) G(T ′)

mT

mT ′

which makes G(T ) → G(T ′) a group homomorphism. In particular, it sends
the identity eT ∈ G(T ) to the identity eT ′ ∈ G(T ′). So e = eS ∈ G(S) maps to
every eT via the S-scheme structure on T .
Similarly, taking inverses is also compatible with T ′ → T . So we have an inverse
i of the tautological point idG ∈ G(G) which has ∀x ∈ G(T ), x−1 = i ◦ x. We
can use these to give a categorical definition of a group scheme.

Definition 2.2. An S-group scheme is an S-scheme G together with an S-
morphism m : G×S G→ G such that:
(i) The diagram

(G×S G)×S G G×S G G

G×S (G×S G) G×S G

m×S idG m

idG ×Sm

m

commutes. (ii) There exists a section e : S → G of G→ S with

S ×S G G

G×S G

∼=

e×S idG m
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commute.
(iii) There exists an S-morphism i : G→ G such that

G×S G G

G S

m

i×S idG e

commute.

The two definitions coincide: If we have the categorial definition, then by
taking T -valued points in all these diagrams immediately make G(T ) a group.
The converse is given by Yoneda lemma.
There is a third, purely functorial definition.

Definition 2.3. An S-group scheme is an S-scheme G whose functor of points
is a functor (Sch/S)op → (Groups). More precisely, for all T ∈ (Sch/S), we have
a group structure on G(T ) such that for all T ′ → T , the map G(T )→ G(T ′) is
a homomorphism.

Again it’s enough to check affine T . This is equivalent to our previous
definitions by Yoneda lemma.

Example 2.3. 1. The multiplicative group Gm = SpecZ[T, T−1] has Gm(R) =
(R×,×) which is a group that’s functorial in R. Indeed, it’s induced by m :
Gm ×Gm = SpecZ[T1, T2, (T1T2)−1]→ SpecZ[T, T−1] via T 7→ T1T2.
2. For n ≥ 1, the nth general linear group is constructed from the affine scheme
given by GLn = SpecZ[{Tij}1≤i,j≤n, (detT )

−1]. Of course GLn(R) is then what
you think it is. Since R → R′ induces GLn(R) → GLn(R

′), GLn is a group
scheme.
3. For a field k, an elliptic curve E/k is a k-group scheme under its group law.
4. For any abstract group H and S any scheme, the S-scheme HS =

∐
H S is

an S-group scheme (“constant” group scheme).
Indeed, HS(T ) = {locally constant maps T → H} which is a group functorial
in T .
In the case where S = SpecA is affine, H is finite iff HS is affine (if H is finite
then HS = SpecAH , otherwise HS not quasicompact).

For group schemes G1, G2 over S, a morphism of group schemes G1 → G2

is just an S-morphism such that the induced G1(T ) → G2(T ) is a homomor-
phism. We can also form the product group scheme G1×S G2 with the obvious
multiplication.
Kernels, on the other hand, requires some subtle treatment. Suppose f : G1 →
G2 is a morphism of S-group schemes. The kernel of f is defined by the fibre
product ker f = G1 × S over e : S → G2 and f : G1 → G2. This is certainly
an S-scheme and it is also a group scheme by (ker f)(T ) = ker fT . It’s also a
“normal subgroup scheme” of G1, which we’ll define in a moment.

Example 2.4. Suppose A is a ring and n ∈ Z, the A-group scheme of multi-
plications is Gm,A = SpecA[T, T−1]. The A-morphism [n] : Gm,A → Gm,A via
T 7→ Tn is a morphism of A-group schemes as it induces R× → R×, x 7→ xn on
any A-algebra R.
For n = 0, this is just the identity. For n ≥ 1, the kernel of [n] is known as
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the groups of roots of unity µn,A = ker[n] = SpecA[T ]/(Tn − 1). Note that
A[T ]/(Tn − 1) is finite and free of rank n over A.
If A = k is a field and char k ∤ n, then k[T ]/(Tn − 1) is étale over k (as
(d/dT )(Tn − 1) = nTn−1 is invertible). If moreover k has exactly n nth roots
of unity, then µn is just µn(k)Spec k which is the disjoint union of n copies of
Spec k.
If n = pj where p = char k, then µpj = Spec k[T ]/(T − 1)p

j

. But k[T ]/(T − 1)p
j

is local, so this is just a nonreduced (if j > 0) scheme with a single point. So
µn doesn’t have to be smooth although Gm is always smooth over k.

For a morphism f : G1 → G2 of S-group schemes, we (ideally) want ker f to
be a closed subscheme of G1, but there is a small problem here.

Example 2.5. If we take idG : G → G, then ker f = S viewed as e : S → G.
But e might not be a closed immersion: Take S = A1

k and G = U ∪U ′ the affine
line with two origins (U ∼= U ′ = A1

k). G is an S-scheme via the projection. To
make it an S-group scheme, we need to produce an m : G×S G→ G. We have
G ×S G = (U ×S U) ∪ (U ′ ×S U

′) ∪ (U ×S U
′) ∪ (U ′ ×S U), so we can map

(U ×S U) ∪ (U ′ ×S U
′) to U and (U ×S U

′) ∪ (U ′ ×S U) to U ′ in the obvious
way. Then G is a nonseparated S-group scheme and e : S → G is not a closed
immersion.
These kinds of phenomena occurs probably more often than you thought, e.g.
try looking at Picard schemes.
The closed immersion j : Spec k = {0} → A1

k allows us to view G as j∗(Z/2Z)
(i.e. for any open V ⊂ A1

k, the section of G over V is Γ(V, j∗(Z/2Z))).

Proposition 2.1. An S-group scheme G is separated iff e ∈ G(S) is a closed
immersion.

Proof. The “only if” direction is exercise (in fact this true for any section of a
separated morphism of schemes).
For the “if” direction, note that if e is closed then so isG = S×SG→ G, e×S idG.

S ×S G G×S G

S G

e×S idG

pr1 pr1

e

On the other hand, e ×S idG = s ◦ ∆G/S where s : (g, h) 7→ (gh−1, h) is an
automorphism of G×S G (i.e. for any T and g, h ∈ G(T ), we get sT : (g, h) 7→
(gh−1, h) which defines s by Yoneda lemma), so we are done.

Corollary 2.2. 1. If f : G1 → G2 is a morphism of S-group schemes and G2

is separated, then ker f is a closed subscheme of G.
2. If S = Spec k for a field k, then any group scheme over S is separated.

Proof. 1. Closed immersions are stable under fibre products.
2. The image of e is a closed point.

Example 2.6. 1. For every ring R, we have a determinant map det(R) :
GLn(R) → R× = Gm(R) which is functorial in R, hence defines a morphism
det : GLn → Gm. Its kernel is called the special linear group SLn = ker det.
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2. Suppose k is a field, then we have a morphism of k-group schemes [n] :
Ga,k → Ga,k via multiplication by n. If n is invertible in k, then this is an
automorphism since it is an automorphism at the level of k-algebras. But if
char k = p | n, then [n] is essentially the zero morphism.
3. Suppose X is a scheme over Fq for q = pn. We have a Frobenius endomor-
phism Fq : X → X which is identity on the underlying topological space and
looks like x 7→ xq on OX . Now suppose that X = G = Ga/Fp is the additive
group scheme. The Frobenius Fp on G is then induced from Fp[T ]→ Fp[T ], T 7→
T p, which is a morphism of group schemes. Then ker(F j

p ) = SpecFp[T ]/(T
pj

)
which is sometimes called αpj . Like µpj , αpj is nonreduced point. But note that
µpj is not isomorphic to αpj .

Remark. In the affine case, we have yet another way to make sense of the def-
inition of group schemes. Suppose we have a group scheme G = SpecA →
S = SpecR where R is a ring and A is an R-algebra. Then m : G ×S G =
Spec(A ⊗R A) → G is induced by some µ = m∗ : A → A ⊗R A (“comultipli-
cation”); e : S → G is induced by ϵ = e∗ : A → R (“counit/augmentation”);
i : G → G is induced by ι = i∗ : A → A (“coinverse”). These are all R-algebra
homomorphisms, and since m, e, i make G a group scheme, we can obtain cor-
responding (opposite) diagrams for µ, ϵ, ι. For example, associativity becomes

A A⊗R A (A⊗R A)⊗R A

A⊗R A A⊗R (A⊗R A)

µ

µ

µ⊗RidA

idA ⊗Rµ

An R-algebra equipped with (µ, ϵ, ι) is called a Hopf algebra (or bialgebra).
We then have an equivalence of categories from the opposite category of affine
R-group schemes and Hopf algebras over R.

Let k be a field. The r-torus over k is the k-group scheme

Gr
m,k = Spec k[T1, . . . , Tr, (T1 · · ·Tr)−1] = Spec k[Λ]

where k[Λ] is the group algebra of Λ = Zr over k.
In general, if Λ is any abelian group and A any ring, we get the A-algebra A[Λ] =⊕

λ∈ΛA(λ) with multiplication induced from (λ)(µ) = (λµ). The A-group
scheme DA(Λ) = SpecA[Λ] is called a diagonalisable group scheme. On the
level of A-algebras, we have DA(Λ)(R) = HomA(A[Λ], R) = Hom(Groups)(Λ, R

×)
which is an abelian group.

Example 2.7. DA(Z) = Gm,A, DA(Z/nZ) = SpecA[T ]/(Tn − 1) = µn,A.

Remark. 1. As DA(Λ) = DZ(Λ) ×SpecZ SpecA, we can generalise the notion
of diagonalisable groups to any scheme S by setting DS(Λ) = DZ(Λ)×SpecZ S.
This can also be interpreted as SpecOS

OS [Λ], if you know what that means.

2. Recall that if we are in the affine case G = SpecB over S = SpecA, then B
is a Hopf algebra over A equipped with comultiplication µ = m∗ : B → B⊗AB
and counit ϵ = e∗ : B → A. In the case of DR(Λ), we simply have R[Λ] →
R[Λ]⊗R R[Λ], (λ) 7→ (λ)⊗ (λ).

To generalise phenomena from the geometry of tori,
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Proposition 2.3. HomA(DA(Λ),Gm,A) ∼= Λ if SpecA is (nonempty and) con-
nected.

Proof. For λ ∈ Λ, A[T, T−1] → A[Λ], T 7→ (λ) is a homomorphism of A-Hopf
algebras (where A[T, T−1] is given the natural comultiplication µ(T ) = T ⊗ T ).
This gives a map DA(Λ)→ Gm,A. Conversely, suppose DA(Λ)→ Gm,A is given
by ϕ : A[T, T−1] → A[Λ], ϕ(T ) =

∑
λ aλ(λ) ∈ k[Λ]×. But since ϕ commutes

with comultiplication, we have∑
λ,λ′

aλaλ′(λ)⊗ (λ′) =
∑
λ

aλ(λ)⊗ (λ)

So aλ = a2λ for all λ and aλaλ′ = 0 for any λ′ ̸= λ. But SpecA is connected iff the
only idempotents in A are 0, 1. These aλ cannot all be zero since ϕ(T ) ∈ A[Λ]×.
If aλ = 1 then aλ′ = 0 for all λ′ ̸= λ, so ϕ(T ) = (λ) which gives the inverse.

Definition 2.4. An S-group scheme G is commutative if G(T ) is an abelian
group for all S-scheme T .

Equivalently, the diagram

G×S G G

G×S G

m

(x,y)7→(y,x) m

commutes.

Definition 2.5. For g ∈ G(T ), we can define the conjugation map inng :
GT → GT = G×S T by requiring it to induce, for any T -scheme T ′, GT (T

′)→
GT (T

′), x 7→ (g′)x(g′)−1 (where g′ is the image of g).

So G is commutative iff for any T and any g ∈ G(T ), we have inng = idGT
∈

Aut(GT ).
Morally, we should be able to define a group scheme ZG by requiring ZG(T ) =
{g ∈ G(T ) : inng = id}. But why should it be a (sub)group scheme? This turns
out to be not entirely obvious at all.

Theorem 2.4. Suppose k is a field and G is a k-group scheme locally of finite
type, then ZG is a closed subgroup scheme of G.

Remark. ZG(T ) might not be the centre of G(T ) in general. Take k = Q, then
it’s possible to construct a group scheme G (over k) such that G ∼= µ3,Q ⊔ µ3,Q,
G(Q̄) ∼= S3 and in general G(R) = µ3(R)⋊ (Z/2Z)Q(R) where Z/2Z acts on µ3

by 1 : z 7→ z−1. If µ3(R) is trivial, then G(R) = (Z/2Z)Q(R) (which is Z/2Z if
SpecR is connected) and its centre is G(R). But G(Q̄) ∼= S3 which has trivial
centre.

2.2 Finite Locally Free Group Schemes; Duality

Recall that f : X → Y is finite if for every open affine V = SpecA ⊂ Y ,
f−1(V ) = SpecB is also affine for an A-algebra B which is finite as an A-
module. As usual one can simply check an open affine covering of Y .
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f is finite and locally free if for some open affine covering Vi = SpecAi of Y ,
f−1(Vi) = SpecBi where B is an A-algebra that is finite and free as an A-
module. Recall that for a finite A-module M , if M is locally free then M is flat,
and the converse is true if A is Noetherian. So if Y is locally Noetherian, then
f is finite locally free iff f is finite and flat.
We are interested in finite locally free S-group schemes.

Example 2.8. The constant S-group scheme attached to any finite group is a
finite locally free S-group scheme. Other examples include µn,S , DS(Λ) for Λ
finite, αpj ,k for a field k of characteristic p (S = Spec k), etc..
Another important class of examples is given by the elliptic curves over R (which
are, näively, E ⊂ P2

R given by a Weierstrass equation with invertible discrimi-
nant) which has group law ⊕ : E ×SpecR E → E making E/R a commutative
group scheme. For every n ≥ 1, [n] : E → E is finite and locally free, so ker[n]
(often denoted as E[n] or nE) is a finite locally free R-group scheme.

If S = SpecA and G = SpecB are affine with B a finite locally free Hopf
algebra over A (i.e. a Hopf algebra whose structure makes G→ S finite locally
free). Suppose G is commutative, then B is cocommutative, i.e.

B B ⊗A B

B ⊗A B

µ

µ x⊗y 7→y⊗x

commutes. The dual B∨ = HomA(B,A) is locally free and (B∨)∨ = B. The
transposes µ∨ : B∨ ⊗A B∨ → B∨, ϵ∨ : A → B∨ make B∨ a commutative A-
algebra. The multiplication and unit in B then becomes comultiplication and
counit in B∨. The transpose of the antipode becomes the antipode of B∨. So
we get another finite locally free group scheme G∨ over A, called the Cartier
dual of G.
We have (G∨)∨ = G. Also, if G is an S-group scheme (not necessarily affine),
we can define G∨ by gluing over affines. This can alternatively done via G∨ =
SpecOS

f∗O∨
G, where f is the structure morphism of G.

For G = (Z/nZ)S , we have G∨ = µn,S . In general,

Proposition 2.5. Suppose Λ is a finite abelian group and ΛS the associated
constant group scheme, then (ΛS)

∨ = DS(Λ).

Proof. Assume S = SpecA, then ΛS = Spec(AΛ). The group scheme structure
on ΛS corresponds to a comultiplication AΛ → AΛ ⊗A AΛ = AΛ×Λ. On the
other hand, DS(Λ) = SpecA[Λ] has comultiplication A[Λ] → A[Λ] ⊗A A[Λ] =
A[Λ × Λ], (λ) 7→ (λ) ⊗ (λ) = (λ, λ). The map AΛ × k[Λ] → A, (f, λ) 7→ f(λ)
provides the way to interchange the respective (co)multiplication.

So DS(Λ)
∨ = ΛS .

Let’s compute some more Cartier duals.

Proposition 2.6. Let p be a prime, then α∨
p
∼= αp.

Proof. αp,Fp
= SpecB where B = Fp[T ]/(T

p). It has comultiplication µ : B →
B ⊗Fp

B, T 7→ T ⊗ 1 + 1⊗ T . Let ei = T i ∈ B for 0 ≤ i < p, then

eiej =

{
ei+j if i+ j < p

0 otherwise
, µ(ek) =

k∑
i=0

(
k

i

)
ei ⊗ ek−i
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The unit is e0 whereas the counit is ϵ : e0 7→ 1, ei 7→ 0 for all i > 0. Let (e∨i ) be
the dual basis, then

µ∨(e∨1 ⊗ e∨j ) =

{(
i+j
i

)
e∨i+j if i+ j < p

0 otherwise
, ϵ∨ : 1 7→ e∨0

whereas the dual of multiplication on B becomes e∨k 7→
∑

i+j=k e
∨
i ⊗ e∨j . Let

e∗i = i!e∨i for 0 ≤ i < p, then

µ∨(e∗i ⊗ e∗j ) =

{
e∗i+j if i+ j < p

0 otherwise

The comultiplication gives T∨ 7→ T∨⊗1+1⊗T∨ which too is what’s expected,
hence B is self-dual.

Corollary 2.7. For any (nonempty) Fp-scheme S, αp,S is not isomorpphic as
an S-group scheme to µp,S.

Remark. αp2 , on the other hand, is not self-dual. In fact we have αp2 ∼=
SpecFp[T1, T2]/(T

p
1 , T

p
2 ) as a scheme.

Let’s look for some other descriptions of dual. Recall that finite abelian
groups G admit their duals via G∨ = Hom(G,C×).

Theorem 2.8. Suppose G is a locally free commutative S-group scheme, then
for any S-scheme T , we have

G∨(T ) ∼= Hom(GroupSch/T )(GT ,Gm,T )

with the isomorphism functorial in T .

Proof. Suffices to consider the case S = T = SpecA,G = SpecB. We have
G∨(S) = HomA(B

∨, A) and that

Hom(GroupSch/S)(G,Gm) = Hom(Hopf/A)(A[T, T
−1], B)

= {t ∈ B× : µ(t) = t⊗ t, ϵ(t) = 1}

Every t ∈ B gives rise to ϕt : B
∨ → A via ϕt(α) = α(t). For α, β ∈ B∨, their

product is essentially α · β(b) = (α ⊗ β)(µ(b)) and the unit is b 7→ ϵ(b). So
ϕt is an A-algebra homomorphism iff 1 = ϕt(1) = ϵ(t) (so t is a unit as B is
a finite A-algebra) and ϕt(α · β) = α(t)β(t) for any α, β ∈ B∨ (equivalently
µ(t) = t⊗ t).

Example 2.9. α∨
p
∼= αp, so there is a morphism f : αp×αp → Gm (everything

over Fp) which is bilinear and nondegenerate on points. With a little more work,
one can show that f is the map

(x, y) 7→
p−1∑
i=1

(xy)k

i!

Remark. The rank of an S-group scheme f : G → S is rk(G/S) = rkOS
f∗OG.

For a finite group Λ, we have rk(ΛS) = |Λ| and, if Λ is abelian, |Λ| = rkDS(Λ).
We also have rkαpj = pj . In general, we have rkG∨ = rkG.
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Theorem 2.9. Suppose either G is commutative or S is reduced, then for any
S-scheme T and g ∈ G(T ), we have ord g | rk(G/S).

Example 2.10. 1. Consider a field extension k/Fp, then αp(k[ϵ]/(ϵ
2)) = ϵk

which can be arbitrarily large.
2. αp×αp = Spec k[T1, T2]/(T

p
1 , T

p
2 ). For (a : b) ∈ P1(k), we have the subscheme

aT1 + bT2 = 0 which is a subgroup scheme of rank p (and in fact isomorphic to
αp).
3. H = {( ∗ ∗

0 1 )} ⊂ GL2,k contains G = ( µp αp

0 1 ). G has rank p2 and is not
commutative. One observe the discrepancy between groups and group schemes:
Any group with order p2 has to be commutative, but G is a noncommutative
group scheme with rank p2. Fortunately, all is not lost. It turns out that every
group scheme of rank p is commuative (Tate-Oort).

A morphism of (finite locally free commutative) group schemes f : G → H
gives rise to a dual morphism f∨ : H → G, and (G ×S H)∨ ∼= G∨ ×S H

∨.
In fact, we can make an abelian category whose objects are finite locally free
commutative group schemes over S and whose morphisms are some (but not
all) morphisms of group schemes. In this category, we will have coker(f : G→
H) = ker(f∨ : H∨ → G∨)∨. The reason why we cannot take all the morphisms
is that there exists finite locally free commutative S-group schemes G,H with
f : G→ H which is not flat (which means that ker f is not locally free).

Example 2.11. If S = SpecZ and G = (Z/2Z)S , H = µ2,S = SpecZ[T ]/(T 2−
1). The obvious map G → H is an isomorphism except at (2) ∈ SpecZ, i.e.
it’s an isomorphism over SpecZ[1/2]. So ker f |SpecZ[1/2] is trivial, but ker f ×
SpecF2 = (Z/2Z)F2

, so f is not flat.

2.3 Algebraic Group Schemes over Fields

Let k be a field and G a group scheme over k. G has some nice properties.

Lemma 2.10. G is separated.

Proof. The diagonal morphism of G is a base change of e : S → G, which is a
closed immersion if S = Spec k.

Lemma 2.11. The multiplication m : G×k G→ G is open.

Proof. Consider the isomorphism s : G ×k G → G ×k G (the “shear map”)
defined on points by (x, y) 7→ (xy, y). We then have

G×k G G×k G

G
m

s

pr1

As projections are open for schemes over a field, we conclude thatm is open.

ΩG/k is free and is canonically isomorphic to ΩG/k(e)⊗kOG where ΩG/k(e) =
ΩG/k,e/ΩG/k,eme. This is a part of a more general fact.

Proposition 2.12. Suppose f : G → S is any group scheme (with e the unit
section), then ΩG/S

∼= f∗(e∗ΩG/S).
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Proof. Let s : G×S G→ G×S G be the shear map. The commutative diagram
we’ve seen can be extended to

G×S G

G×S G G

G S

s

m

pr2

pr1

pr2 f

f

So pr∗1 ΩG/S = ΩG×SG/G
∼= s∗ΩG×SG/G = s∗ pr∗1 ΩG/S = m∗ΩG/S . We have

pr1 ◦(ef, idG) = ef : G→ G and m ◦ (ef, idG) = idG which gives the result.

Lemma 2.13. Subgroup schemes are closed. More precisely, if i : H ↪→ G is
an immersion which is also a k-group scheme morphism, then i is closed.

This is false if we don’t assume i to be a morphism between group schemes,
as e.g. Gm ↪→ Ga is not closed.

Definition 2.6. G/k is (locally) algebraic if it’s (locally) of finite type over k.

Example 2.12. 1. Any constant group is locally algebraic and it’s algebraic iff
the original group is finite.
2. GLn /k and its closed subgroups (“linear algebraic groups”) are algebraic.
3. Elliptic curves and in general abelian varieties are algebraic.

Theorem 2.14 (Cartier’s Theorem). Suppose G/k is locally algebraic and
char k = 0, then G is smooth.

Proof. It suffices to show that G ×k k̄ is smooth over k̄. So we can assume
WLOG that k = k̄.
Smoothness is an open condition, and the closed points (which are just the k-
points as we’ve assumed k = k̄) are dense (as G is locally of finite type over k).
So it suffices to show that G is smooth at any closed point g ∈ G(k). Assume
that g = e (which is sufficient since we can translate).
Let SpecB ⊂ G be an open neighbourhood of e, then ΩB/k is a free B-module of
finite rank (as B is of finite type). Also, Ω∨

B/k = Derk(B,B) surjects to Ω∨
B/k⊗e

k = (me/m
2
e)

∨ = Derk(B, k) = {k-linear ∂ : B → k : ∂(fg) = f(e)∂g + g(e)∂f}
by e∗. Let t1, . . . , td ∈ me be such that (ti mod m2

e)i is a basis for me/m
2
e, and

D1, · · · ,Dd ∈ Derk(B,B) such that (e∗Di)i is the dual basis to (ti mod m2
e)i.

Then k[T1, . . . , Td] → OG,e/m
N
e , Ti 7→ ti is surjective as the monomials in ti’s

generate mn
e /m

n+1
e . So we get a surjective map α : k[[T1, . . . , Td]] → ÔG,e. For

the other way around, consider

OG,e → k[[T1, . . . , Td]], f 7→
∑

n1,...,nd≥0

1

n1! · · ·nd!
(Dn1

1 · · ·D
nd

d f)(e)Tn1
1 · · ·T

nd

d

which we can do since char k = 0. This is a ring homomorphism by some easy
induction, and it extends to a map β : ÔG,e → k[[T1, . . . , Td]]. It is surjective
as β(ti) ≡ T1 (mod (T1 · · ·Tn)2).
Now βα is a surjective ring endomorphism of k[[T1, . . . , Td]], so it has to be
injective. Therefore α is bijective and hence an isomorphism.

27



2.4 Étale Group Schemes; Frobenius and Verschiebung

Recall that X is a scheme étale over a field k iff X is a disjoint union
∐

i Spec ki
where ki are finite separable extensions of k. Consider the separable closure
ksep/k with Galois group Γk = Gal(ksep/k), then

X(ksep) =
∐
i

Homk(ki, k
sep)

is a set with a continuous (i.e. stabilisers are open) left action of Γk. By Ga-
lois theory, there’s an equivalence of categories between the category of étale
k-schemes and continuous Γk-sets. Consequently, the category of étale group
schemes over k is equivalent to the category of abstract groups Λ with a con-
tinuous action Γk → Aut(Λ). In particular, G is étale over k iff G ×k k

sep is a
constant group scheme.
If k has characteristic 0, then every finite group scheme over k is étale, so the
classification of finite group schemes over k is just the classification of finite
groups and the actions of Γk (neither of which is nowhere near being trivial).
How about positive characteristics?
We say a scheme S has characteristic p if pOS = 0, or equivalently S is an
Fp-scheme. We have the absolute Frobenius FS : S → S is the morphism which

is the identity on points and F#
S : OS → OS is x 7→ xp. If f : X → S is a

morphism of schemes with characteristic p, then the diagram

X S

X S

f

FX FS

f

commutes. It would be convenient if we can linearise this. Suppose x =
(x1, . . . , xn) ∈ An(k) has g(x1, . . . , xn) = 0 for some g ∈ k[T1, . . . , Tn], then
g(p)(xp1, . . . , x

p
n) = 0 where g(p) is obtained by raising each of its coefficients to

power p.

Definition 2.7. Let X(p) = X(p/S) = X ×S,f,FS
S (the “p-conjugate of X”).

Then there is a unique S-morphism FX/S , called the relative Frobenius, making

X

X(p) X

S S

FX/S

FX

f
f

FS

commute.

Example 2.13. If X = SpecA[{Ti}]/({gj}) → S = SpecA, then X(p) =

Spec SpecA[{Ti}]/({g(p)j }) = SpecB ⊗A,ϕA
A where ϕA : A → A is given by

x 7→ xp. We sometimes write ϕA,∗B = B ⊗A,ϕA
A as b ⊗ ap = ab ⊗ 1 It’s also

common to denote by ϕB/A the induced map ϕB/A = F ∗
X/S : B ⊗A,ϕA

A →
B, b⊗ a 7→ abp.
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If G/S is a group scheme of characteristic p, then FG/S : G → G(p) is
a morphism of S-group schemes due to the functoriality of the Frobenius. If
S = SpecFp, then FX/S = FX . If X = X0 ×Fp

S, then X(p) = X0 ×Fp
S = X

(via FX0 × idS). If G = ΛS is a constant group scheme, then G(p) = G and
FG/S = idG asG = G0×Fp

S,G0 = ΛFp
=
∏

Λ SpecFp. IfG is any diagonalisable

group, then G(p) = G and FX/S = [p]. Indeed, we can just check this for
DFp

(Λ) = SpecFp[Λ] where [p]∗ : (λ) 7→ (λp) (writing Λ multiplicatively). So
[p]∗ = ϕFp [Λ].
Thus kerFG/S is trivial if G is constant, ker[p] if G is diagonalisable, αp,S if
G = Ga,S . All of them is in ker[p]. This turns out to be a general fact for
commutative group schemes.

Theorem 2.15. Suppose G/S is a flat commutative group scheme of charac-
teristic p. Then there exists a map VG/S : G(p) → G (called the “shift” or
“Verschiebung”) of S-group schemes with VG/S ◦ FG/S = [p].
Furthermore, VG/S is functorial in the sense that

G(p) G

H(p) H

f(p)=f×idS

VG/S

f

VH/S

commutes for any map f : G → H of flat commutative S-group schemes G,H
of characteristic p.

Proof. We will construct VG/S as follows: Suppose G = SpecB/S = SpecA
where A is an Fp-algebra. [p]∗ : B → B is the composition of comultiplication
and multiplication maps between B and

⊗p
AB. Consider the set of symmetric

invariants (
⊗p

AB)Sp which admits a map from B as G is commutative.
For any A-module M , we have an obvious map γ :

⊗p
AM → (

⊗p
AM)Sp by

sending x1⊗ · · · ⊗xp to
∑

σ∈Sp
xσ(1)⊗ · · · ⊗xσ(p) for any A-module M . If M is

free over A, then there is an isomorphism η : coker γ →M⊗A,ϕA
A, x1⊗· · ·⊗x 7→

x⊗ 1. Indeed, suppose M =
⊕

i∈I Aei, then Im γ is generated by the elements

ti =
∑
σ∈Sp

eiσ(1)
⊗ · · · ⊗ eiσ(p)

, i = (i1, . . . , ip) ∈ Ip

whereas (
⊗p

AM)Sp is generated by

t′i =
∑

σ∈Sp/∆i

eiσ(1)
⊗ · · · ⊗ eiσ(p)

where ∆i is the stabiliser of i. Consequently ti = |∆i|t′i. So coker γ is generated
by ei ⊗ · · · ⊗ ei, i ∈ I. Write δ : M → (

⊗p
AM)Sp ,m 7→ m ⊗ · · · ⊗ m. If

m =
∑

imiei, then

δ(m) =

(∑
i

miei

)
⊗ · · · ⊗

(∑
i

miei

)
≡
∑
i

mp
i ei ⊗ · · · ⊗ ei (mod Im γ)

As δ(am) = a!δ(m), δ induces an isomorphism M ⊗p A→ coker γ.
Let’s apply this result to B = M . Since the multiplication map

⊗p
AB → B
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vanishes on Im γ, we have a factorisation

B
⊗p

AB B

(
⊗p

AB)Sp B ⊗A,ϕA
A

[p]∗

η

ϕB/A

So for G affine, VG/A is simply the composition of η and comultiplication.
For G not necessarily affine (but still over A), we write G =

⋃
i Ui, Ui = SpecBi.

We have the maps Up
i = Spec(

⊗p
ABi)→ V p

i = Spec((
⊗p

ABi)
Sp). The diagram

we had for the affine case translates to

G
∏p

AG G

⋃
i U

p
i G(p)

⋃
i V

p
i

m diag.

[p]

FG/A

(ηi)

For not necessarily affine S, we can just glue on the base.

Example 2.14. For a constant group scheme G = ΛS , we have FG/S = id, so
VG/S = [p]. For G = Gm,S , FG/S = [p] is surjective, so VG/S = id.
For G = Ga,S , [p] = 0 and FG/S is surjective, so VGa/S = 0.

For G an elliptic curve E over a field k, then FE/k : E → E(p) is an isogeny of
degree p, so VE/k is essentially the dual isogeny of the Frobenius.

Proposition 2.16. FG/S ◦ VG/S ∈ End(G(p)/S) is also given by [p].

Proof. Apply the functoriality of the Verschiebung to f = FG/S : G → G(p).
Then FG/S ◦ VG/S = VG(p)/S ◦ FG(p)/S = [p]G(p) by some easy diagram chasing

involving FG(p)/S : G(p) → (G(p))(p) = G(p2).

Theorem 2.17. Suppose G/S is a finite locally free commutative group scheme
of characteristic p. Then V ∨

G/S = FG∨/S.

Proof. Let’s assume G = SpecB,S = SpecA. We have (B ⊗ϕ A)
∨ = {l′ :

B → A additive : ∀a ∈ A, b ∈ B, l′(ab) = apl′(b)}. We want to identify it
with B∨ ⊗ϕ A. Indeed, the isomorphism is given by the natural map B∨ ⊗ϕ

A → (B ⊗ϕ A)
∨, l ⊗ 1 7→ lp. We know that the Verschiebung has the form

B → (
⊗p

AB)Sp → B ⊗ϕ A. Dualising this gives B∨ ← Symp
AB

∨ ← B∨ ⊗ ϕA.
The second arrow is η∨ : l⊗1 7→ l⊗· · ·⊗l ∈ Symp

AB
∨, so the whole composition

is simply ϕB∨/A.

Let’s now go back to S = Spec k for k a field and G/k algebraic (i.e. of finite
type).
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Definition 2.8. G is unipotent if it’s isomorphic to a (closed) subgroup scheme
of the group of unipotent (i.e. unit upper triangular) matrices Un,k ⊂ GLn,k.

Example 2.15. Ga
∼= U2 is unipotent over any k.

Let G ⊂ Un,k. Consider the tangent spaces TG,e = ker(G(k[ϵ]/(ϵ2))→ G(k))
which is a k-subspace of

TUn,e =

I + ϵX : X =

0 ∗
. . .

0 0




In characteristic 0, the usual theory of Lie groups works, and if G is connected
then we can describe G using TG,e (which is just the Lie algebra of G).

Theorem 2.18. If char k = 0 and G is connected, commutative and unipotent,
then G ∼= Gd

a for some d.

Proof. As G ⊂ Un, we have the identification of G with TG,e⊗Ga (in general if
U is a vector space over k then U ⊗Ga is the affine scheme whose R-points are
U ⊗k R) given by log, exp where as usual exp(X) =

∑
nX

n/n! ∈ Un, log(g) =∑
n(−1)n−1(g − 1)n/n, which are both just finite sums actually. They are

isomorphisms of schemes, and for commutative G they are also isomorphisms
of group schemes.

If G is not commutative, we can still compute the group law on G in terms
of Lie algebra structure on TG,e. This however is not true in characteristic p as
we have the Witt group schemes.

2.5 Witt Group Schemes

Suppose char k = p > 0, then there are unipotent groups that are not smooth,
e.g. αpj ,k ⊂ Ga = U2 is unipotent but not smooth. Note that αpj ,k and Ga even
have the same tangent space (i.e. k), so indeed tangent spaces don’t tell us a
great deal about the group schemes. Even if we restrict our attention to smooth
commutative groups, things are still more complicated than characteristic 0.

Example 2.16. Take

G =


1 x y

1 x
1

 ⊂ U3 ⊂ GL3

over some field k, then G ∼= A2 as schemes. This is commutative by trivial
matrix multiplications. If char k ̸= 2, there is an isomorphism of group schemes
G→ G2

a via the logarithm map1 x y
1 x

1

 7→ (x, y − (1/2)x2)

If char k = 2, then this argument fails. Indeed, G,G2
a are not even isomorphic

as [2] = 0 on G2
a but not on G.
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Not all is lost. We know that we still have G ∼= A2 as a scheme. We also have

morphisms of group schemes i : Ga ↪→ G via y 7→
(

1 y
1
1

)
and q : G → Ga via(

1 x y
1 x

1

)
7→ x. So for any k-algebra R, we have an exact sequence

0 R G(R) R 0
ik qk

So G is a nontrivial extension of Ga by Ga. For k = F2, we have G(F2) ∼= Z/4Z.

The group scheme G constructed above for p = 2 is a special case of the
Witt group scheme W2.
We will construct ring schemes Wn/ SpecFp, 1 ≤ n ≤ ∞,W = W∞ with the
property that Wn

∼= An = SpecFp[T0, . . . , Tn−1],W = SpecFp[{Ti}i∈N] as
schemes. A commutative ring scheme is what you think it is: It’s a scheme
whose Yoneda embedding lands in the category of commutative rings. So for
an Fp-algebra R, we want Wn(R) = Rn,W (R) = RN with unusual addition and
multiplication.
We will see that W1 = Ga and there are morphisms of ring schemes Rn :
Wn+1 →Wn, (T0, . . . , Tn) 7→ (T0, . . . , Tn−1) with kerRn = {(0, . . . , 0, x)} ∼= Ga.
And the realisation of W shall be via W = lim←−n

Wn with respect to this system.

We’ll have Wn(Fp) ∼= Z/pnZ,W (Fp) = Zp. More generally, if k is a perfect field
with characteristic p, A = W (k) will be a complete DVR with uniformiser p
and residue field k. Concretely, x ∈ A would have the form

∑
i≥0[x]p

i where
[x] is the Teichmüller representative of x in k. The identification A ∼= W (k) is

via sending
∑

i[xi]p
i to the Witt vector (x0, x

p
1, x

p2

2 , . . .). In particular, [p] takes
(x0, . . . , xn−1) to (0, xp0, . . . , x

p
n−2). We can write [p] = V ◦F , and ideed the Ver-

schiebung is simply V which is the shift map (x0, . . . , xn−1) 7→ (0, x0, . . . , xn−2).
Note that when k is perfect, pW (k) = {(0, x1, . . .)} as F is bijective. But this
is not true if k is not perfect.
To constructWn, we need to define addition and multiplication morphisms using
some polynomials, and we’ll start from characteristic 0.

Definition 2.9. Let Wn = SpecZ[T0, . . . , Tn−1] = An
Z. Consider the polyno-

mial Φ = (Φ0, . . . ,Φn−1) : Wn → Gn
a,Z where Φi are the Witt polynomials (also

written as Wi) given by Φ0(T0) = T0,Φ1(T0, T1) = T p
0 + pT1 and in general

Φj(T0, . . . , Tj) = T pj

0 + pT pj−1

1 + · · · + pjTj . These are also called “phantom
components”.
We can extend all these to Φ : W = lim←−n

Wn → GN
a .

Once p is invertible, it’s possible to invert Φ. In other words, Φ×Z Z[1/p] :
Wn ×Z Z[1/p]→ Gn

a,Z[1/p] is an isomorphism of schemes. This defines a unique

ring scheme structure on Wn ×Z Z[1/p] for which Φ is a morphism of ring
schemes. That is, if R is a Z[1/p]-algebra, then Φ : Wn(R) → Rn is a bi-
jection making Wn(R) a ring. This ring structure is equivalent to the family
of polynomials Sn, Pn ∈ (Z[1/p])[X0, . . . , Y0, Y1, . . .] with ∀x, y ∈ Wn(R), we
have x +W y = (S0(x, y), S1(x, y), . . .), x ×W y = (P0(x, y), P1(x, y), . . .), i.e.
Φj(S0(X,Y ), S1(X,Y ), . . .) = Φj(X) + Φj(Y ),Φj(P0(X,Y ), P1(X,Y ), . . .) =
Φj(X)× Φj(Y ).

Example 2.17. For j = 0, Φ0 = T0, so S0 = X0 + Y0, P0 = X0Y0. For j = 1,
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Φ1 = T p
0 + pT1 and thus (X0 + Y0)

p + pS1 = (Xp
0 + pX1) + (Y p

0 + pY1), so

S1 = X1 + Y1 +
Xp

0 + Y p
0 − (X0 + Y0)

p

p
= X1 + Y1 −

p−1∑
i=1

1

p

(
p

i

)
Xi

0Y
p−i
0

Similarly P1 = Xp
0Y1 +X1Y

p
0 + pX1Y1.

One realise that all these polynomials have integer coefficients. It’s a miracle
that this is true in general.

Theorem 2.19. For all n ≥ 0, Sn, Pn ∈ Z[{Xi, Yi}].

Consequently, Wn,W are ring schemes over Z via Sn, Pn. The axioms they
have to satisfy for this to work are polynomial identities involving Sn, Pn, 1 =
(1, 0, 0, . . .), 0 = (0, 0, . . .), but we already know that they hold in Z[1/p].

Proof. (Dwork) First define F, V : W → W via the obvious choices F =
(T p

0 , T
p
1 , . . .), V = (0, T0, T1, . . .). F is a morphism of schemes and

Φj ◦ f = Φj(T
p
0 , . . . , T

p
j ) =

j∑
i=0

piT pj−i+1

i = Φj+1 − pj+1Tj+1

On the other hand,

Φj ◦ V = Φj(0, T0, . . . , Tj−1) =

j∑
i=1

piT pj−i

i−1 = pΦj−1

So V is additive, i.e. it’s an endomorphism of the group scheme W ×Z Z[1/p].
The proof follows from the following discussion.

Lemma 2.20 (Dwork’s Lemma). Suppose x = (x0, x1, . . .), y = (y0, y1, . . .) ∈
W(R) for some ring R and k, n ≥ 1, then the followings are equivalent:
(i) xm ≡ ym (mod pkR) for all 0 ≤ m ≤ n.
(ii) Φj(x) ≡ Φj(y) (mod pk+jR) for all 0 ≤ j ≤ n.

Proof. Follows from the definition of Φ.

Theorem 2.21. Let q ∈ Z[X,Y ], R = Z[{Xi, Yi}i∈N], and Qj ∈ R[1/p], j ∈ N be
the unique polynomials such that ∀j,Φj(Q0, . . . , Qj) = q(Φj(X),Φj(Y )). Then
Qj ∈ R.

q = X + Y,Qj = Sj and q = XY,Qj = Pj are the cases we need.

Proof. Assume Qj ∈ R for 0 ≤ j < n, then we have

Φn(Q) = q(Φn(X),Φn(Y )) ≡ q(Φn−1(X
p),Φn−1(Y

p))

≡ Φn−1(Q(Xp, Y p)) (mod pnR)

and
pnQn = Φn(Q0, . . . , Qn−1)− Φn−1(Q

p
0, . . . , Q

p
n−1)

Now for any j < n we have Qj(X,Y )p ≡ Qj(X
p, Y p) (mod p), so by the pre-

ceding lemma we have pnQn ≡ 0 (mod pnR), i.e. Qn ∈ R.
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We have a morphism A1
Z → W,R ∋ x 7→ [x] = (x, 0, . . .) known as the Te-

ichmüller map. This satisfies (x0, x1, . . .) =
∑

n≥0 V
n([xn]) and [a](x0, x1, . . .) =

(ax0, a
px1, a

p2

x2, . . .) (both can be seen from computations in Φ). In particular,
[a][x] = [ax].
We can now define Wn = Wn ×Z Fp,W = W ×Z Fp (so Φ : W → AN

Fp
is given

by (Tj) 7→ (T0, T
p
0 , T

p2

0 , . . .)). As functors, W is simply the restriction of W to
Fp-algebras.

Proposition 2.22. On W , F is a ring scheme morphism and FV, V F are the
multiplication by p map on the appropriate scheme.

Proof. If pR = 0, then FR is simply x 7→ xp which is a ring homomorphism,
so F is a morphism of ring schemes. Let F ◦ V = (G0, G1, . . .) and suppose
multiplication by p is given by (G′

0, G
′
1, . . .) for Gj , G

′
j ∈ Z[X0, . . . , Xj ]. We

want to show that G′
j ≡ Gj (mod p) for all j. Indeed,

Φn(G(x)) = Φn(FV x) = Φn+1(V x)− pn+1(V x)n+1 = pΦn(x)− pn+1xn

= Φn(G
′(x))− pn+1xn

So we are done by Lemma 2.20.

2.6 Finite Group Schemes over a Perfect Field

Let k be a perfect field. If char k = 0 and G is a finite group scheme over k,
then G is smooth, étale, therefore determined by the finite group G(k̄) and the
action of Gal(k̄/k) on it.
From now on, we are interested in the case where k is a perfect field of charac-
teristic p > 0. Suppose G/k is a finite group scheme, then we can consider the
closed subscheme Gred ⊂ G. It is in fact that it’s a closed subgroup scheme.
Indeed, since it’s reduced and finite it is a disjoint union of Spec ki for ki/k finite
(hence separable). So Gred is étale. This means that Gred ×Gred is étale hence
reduced over k, therefore Gred ×Gred ⊂ G×G→ G factors through Gred ⊂ G,
meaning that Gred is a closed subgroup scheme. Even better, since Gred is étale
and the closed immersion Gred → G is defined by a nilpotent ideal, there exists
(by formal étaleness) a unique retraction π : G → Gred which is a homeomor-
phism. By uniqueness, it’s immediate that π is a morphism of group schemes.
Let’s compute its kernel. Since π is a homeomorphism and OGred,e = k, we have
kerπ = G0 = SpecOG,e, which is simply the (unique) connected component of
G containing e. We therefore have the sequence

0 G0 G Gred 0π

G0 is a normal subgroup scheme of G, i.e. for any k-algebra R, G0(R) is a nor-
mal subgroup of G(R). Or equivalently, for any k-algebra R, for all g ∈ G(R),
the map Inng : G ×k R → G ×k R induces an automorphism of G0 ×k R. So
the sequence tells us that G(R) is a semidirect product G0(R)⋊Gred(R). How-
ever, Gred(R) doesn’t have to be a normal subgroup: Say G0 = µp, (Z/pZ)× ⊂
Aut(µp), then µp ⋊ (Z/pZ)× (over Fp) can be noncommutative.
We have G0 ×k Gred ↪→ G×k G→ G which is an isomorphism of schemes since
they have isomorphic functor of points. When G is commutative, this is an
isomorphism of group schemes.
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Theorem 2.23. Suppose G is finite and connected (so Gred = {e} = Spec k).
Then rkkG = dimkOG,e is a power of p.

Proof. As G is connected, OG,e = k ⊕me and mN
e = 0 for some N . So Fn

G/k =
FG(pn−1)/k ◦ · · · ◦ FG(p)/k ◦ FG/k is zero for sufficiently large n. This allows us

to reduce to the case where FG/k = 0, G = SpecB,B = k ⊕ m,mp = 0. So
B = k[T1, . . . , Td]/I where T1, . . . , Td generate m/m2 (Nakayama’s lemma). I
contains the ideal (T p

1 , . . . , T
p
d ).

We claim that I = (T p
1 , . . . , T

p
d ) which shows dimk B = pd. Why is this claim

true? Recall that since G is a group scheme, ΩB/k is free, and it’s isomorphic to
(m/m2) ⊗k B. So it’s freely generated by dT1, . . . ,dTd. Suppose there is some
0 ̸= f ∈ I containing a monomial T a1

1 · · ·T
ad

d where 0 ≤ ai < p are not all zero.
Choose f and the monomial such that a1+ · · ·+ad is minimal. We have df = 0,
so ∂f/∂Tj ∈ I for each j, which contradicts this minimality.

Now consider finite G = G0 × Gred commutative, where G0 is connected
and Gred is étale. By Cartier duality, G∨

0 = (G∨
0 )0 × (G∨

0 )red, G
∨
red = (G∨

red)0 ×
(G∨

red)red. Therefore G0 = ((G∨
0 )0)

∨ × ((G∨
0 )red)

∨ and likewise for Gred.
So we get a decomposition G = Gcc ×Gce ×Gec ×Gee where Gcc is connected
with connected Cartier dual, Gce is connected with étale Cartier dual, etc..
By the theorem, the first three have p-power rank. Gee has rank prime to p:
Gee ×k k̄ is constant, so (Gee

k̄
)∨ ∼=

∏
i µmi,k̄. As this is étale, (p,mi) = 1.

G is connected iff FG/k is nilpotent and G is étale iff FG/k is an isomorphism.
Recall that VG/k is the dual of FG∨/k. So F, V are both nilpotent on Gcc; F is
nilpotent while V is an isomorphism on Gce; F is an isomorphism while V is
nilpotent on Gec.

Definition 2.10. A simple finite commutative group scheme G/k is one that
does not have any nonzero proper subgroup scheme.

For simple G, we must have G is one of Gcc, Gce, Gec, Gee. Suppose k = k̄.
If G = Gec (so G étale and G∨ connected), then G is constant and has order
a power of p, i.e. G ∼= (Z/pZ)k, F = id, V = 0. Dually, if G = Gce then
G ∼= µp/k, F = 0, V = id.
Suppose now that G = Gcc (over any field with characteristic p). We claim that
if G is simple then G ∼= αp, F = V = 0. This is not at all obvious.

Lemma 2.24. Suppose G/k is a finite commutative group scheme, then TG,e
∼=

Hom(GrpSch/k)(G
∨,Ga).

Proof. Suppose G = SpecB. Then TG,e = ker(G(k[ϵ]/(ϵ2)) → G(k)) = {B →k

k[ϵ]/(ϵ2), x 7→ x 7→ e∗(x) + ϵℓ(x)} where e∗ : B → k is the counit. This is
isomorphic to {ℓ : B →k k : ℓ(xy) = ℓ(x)e∗(y) + ℓ(y)e∗(x)}, which is then
isomorphic to Hom(Hopf/k)(k[T ], B

∨) (by sending ℓ to T 7→ ℓ). But this is just
Hom(GrpSch/k)(G

∨,Ga).

Now suppose G = Gcc is simple, then FG/k = 0 since otherwise kerF is a
nontrivial subgroup (as we already know that F isn’t an isomorphism). As G∨

is connected and nonzero, we have TG∨,e ̸= 0. The lemma then shows that there
is a nonzero group scheme morphism G → Ga, which must have trivial kernel
as G is simple. Therefore G→ ker(FGa/k) = αp is a closed immersion. But αp
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already has rank p, so G ∼= αp.
Suppose S is an Fp-scheme, then

Hom(GrpSch/S)(µp,S , (Z/pZ)S) = 0 = Hom(GrpSch/S)(αp,S , (Z/pZ)S)
∼= Hom(GrpSch/S)(µp,S , αp,S)

by Cartier duality. On the other hand, Cartier duality also shows that we have
Hom(GrpSch/k)(αp, µp) ∼= Hom(GrpSch/k)((Z/pZ)k, αp,k) = 0 as αp(k) = 0. But in
general Hom(GrpSch/S)(αp,S , µp,S) = αp(S) ̸= 0.

Proposition 2.25. Hom(GrpSch/k)(µp,Ga) = Hom(GrpSch/k)(µp,Wn) = 0 for all
n ≥ 1.

Proof. Vµp/k is an isomorphism, but VWn/k is nilpotent. Any µp → Wn com-
mutes with V , so it must be zero.

2.7 Dieudonné Theory

The aim here is to establish a contravariant functor from the category of commu-
tative finite k-group schemes of p-power rank to the category of W (k)-modules
M(G) of finite length (i.e. finitely generated and killed by a power of p) equipped
with additive maps F, V : M(G) → M(G) such that Fa = σ(a)F, V σ(a) =
aV, FV = V F = p for any a ∈ W (k) (“Dieudonné modules”). Here σ is the
Frobenius of W (k), i.e. (x0, x1, . . .) 7→ (xp0, x

p
1, . . .) .

Turns out this is an equivalence of categories, is additive in the sense that
M(G×G′) =M(G)⊕M(G′), has lengthW (k)M(G) = d ⇐⇒ rkkG = pd, and
that M(G∨) is in some sense a dual of M(G).
There are various constructions of M(G). The classical method is as follows:
First of all, we assume G∨ is connected (this is in fact equivalent to G being
unipotent). Such G is killed by V n

G/k for some n > 0, since G∨ is killed by Fn
G∨/k

for some n. We can then set M(G) = Hom(GrpSch/k)(G,Wn,k). If n = 1, i.e.
VG/k = 0, then this is Hom(G,Ga,k) = TG∨,e.
We’d like this to be aW (k)-module whose structure is independent of the choice
of n. If V n

G/k = 0, then we have the natural map

V ◦ − : Hom(GrpSch/k)(G,Wn)→ Hom(GrpSch/k)(G,Wn+1)

which is an isomorphism, so indeed the group structure M(G) is independent
of n. We’d quite like to take the obvious W (k)-module structure. We have the
surjective morphism W (k) → Wn(k) which allows the action of W on Wn as
a ring scheme. To make this compatible with V , we need a correction action

W (k) ∋ x : Wn → Wn, (y0, . . . , yn−1) 7→ (xp
1−n

0 , . . . , xp
1−n

n−1 )(y0, . . . , xn−1). We

haveM(G(p)) = Hom(G, (Wn,k)
(p−1)) =M(G)⊗σW (k), and F ∗

G/k :M(G(p)) =

M(G) ⊗σ W (k) → M(G) which gives rise to our desired F . V is constructed
similarly.
It’s a fact that this contravariant functor that takes groups killed by V n

G/k to
Dieudoinné modules killed by V n is an equivalence of categories, and its inverse
can be given by taking G(R) = HomW (k),F,V (M(G),Wn(R)) (we can in fact
write down the affine algebra for G explicitly – see Grothendieck’s Montreal
lectures).
If G,G∨ are both connected, then it’s not hard to see that M(G∨) ∼=M(G)∨ =
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HomW (k)(M(G),W (k)[1/p]/W (k)) with F being the transpose of V and vice
versa.
There is only one possible definition for general G. Write G = Gec ×Gcc ×Gce

and define M(G) =M(Gec ×Gcc)×M((Gce)∨)∨ which, albeit is awful, works.

Remark. We can loose the dependence on n by defining CWu = lim−→n
(Wn →

Wn+1 → · · · ) (“unipotent covectors”). For example, CWu(Fp) = Qp/Zp.
Fontaine constructed a “completion” CW of this with the property that any
G ̸= 0 has a nonzero morphism to CW. In fact, CW(R) = {(. . . , x−2, x−1, x0) ∈
RN : ∃N, (x−N , x−N−1, . . . , ) nilpotent}.
And we can write M(G) = Hom(G,CWu) if G∨ is connected.

3 Quotients and Descents

3.1 Fpqc Sheaves

What are cokernels of morphisms of commutative group schemes? There are
some difficulties in defining it.

Example 3.1. Take [n] : Gm → Gm which has kernel µn and µn(R) =
ker([n] : R× → R×). What about its cokernel? Morally, we want coker[n](R) =
coker[n]R = R×/(R×)n on points. But this cannot be the functor of points of a
scheme X, e.g. we would have X(Q) = Q×/(Q×)n ↪→ X(Q̄) = Q̄×/(Q̄×) = {1}.

Let X be a topological space. Recall that a map of abelian sheaves ϕ : F →
G, taking kernels on each open set gives a sheaf kerϕ, but taking cokernels in
general only gives presheaves. We used sheafification to make sense of cokerϕ.
Perhaps we could do a similar thing here.
This isn’t completely crazy. For X ∈ (Sch/S), its functor of points does have
a sheaf property, in the sense that for any T ∈ (Sch/S) and any open cover
T =

⋃
i Ui, we have

X(T ) = HomS(T,X) ∼=

{
(fi) ∈

∏
i

X(Ui) : ∀i, j, fi|Ui∩Uj = fj |Ui∩Uj

}

Another way to write this is the following: We have an obvious morphism
π : U =

∐
i Ui → T . The projections pr1,pr2 : U ×T U → U have the form

Ui ∩Uj ↪→ Ui, Ui ∩Uj ↪→ Uj under the identification U ×T U =
∏

i,j Ui×T Uj =∏
i,j(Ui ∩ Uj). So we can write X(T ) = {f ∈ X(U) : f ◦ pr1 = f ◦ pr2 ∈

X(U ×T U)}. Grothedieck had the idea of generalising this to more general
morphisms π : U → T . But for which π can we have X(T ) = {f ∈ X(U) :
f ◦ pr1 = f ◦ pr2 ∈ X(U ×T U)}? Taking T = A1

k, U = Gm,k ⊔ {0} shows that
this does not hold in general.
We first start with an incomplete (weaker) definition.

Definition 3.1 (Incomplete). A functor F : (Sch/S)op → (Sets) is called an
fpqc (fidèlement plat quasi-compacte, “faithfully flat and quasicompact”) sheaf
on S if:
(i) We have an isomorphism F (

∐
i∈I Ui) ∼=

∏
i∈I F (Ui), Ui ∈ (Sch/S) compati-

ble with inclusions Ui ↪→
∐

i∈I Ui (in particular F (∅) = {∗} is the final object
in (Sets)).
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(ii) For every surjective, flat and quasicompact morphism π : U → T in (Sch/S),
we have the isomorphism F (T ) ∼= {s ∈ F (U) : pr∗1(s) = pr∗2(s) ∈ F (U ×T U)}
via π∗.

Before giving the complete definition, let’s first see some examples.

Theorem 3.1 (Grothendieck). If X ∈ (Sch/S), then its functor of points ĥX
is an fpqc sheaf on S.

Example 3.2. Take T = S = Spec k, U = SpecK where K/k is a finite Galois
extension with Galois group G. We have U ×T U = SpecK ⊗k K. We have an
isomorphism

K ⊗k K →
∏
G

K,x⊗ y 7→ (xg(y))g∈G

More generally, if K/k is finite separable and L/k contains a Galois closure of
K, then

K ⊗k L ∼=
∏

σ:K↪→L

L

Anyways, this gives us U ⊗T U ∼=
∐

G U . Under this identification, pr1 is idU
on each copy of U in

∐
G U and pr2 is ag = Spec(g) : U → U on the gth copy.

If X is a k-scheme and F = ĥX , then {x ∈ X(U) : x ◦ pr1 = x ◦ pr2} = {x ∈
X(K) : ∀g ∈ G, g(x) = x} = X(k) = X(T ) by Galois theory.

Remark. If U =
∐

i∈I Ui where Ui ⊂ T are open subschemes, then π : U → T
might not be quasicompact, e.g. I might be infinite, and the open immersions
might not be quasicompact (e.g. A∞

k \{0} ↪→ A∞
k ). But we still want to capture

these cases if we want a morally correct definition of fpqc sheaves.

Definition 3.2. A morphism π : U → T is fpqc if it’s flat, surjective, and for
every open quasicompact W ⊂ T there is some open quasicompact V ⊂ U with
π(V ) =W .

Clearly if π is flat, surjective and quasicompact, then it’s fpqc (V = π−1(W )
will do). The correct definition of fpqc sheaves is then

Definition 3.3. A functor F : (Sch/S)op → (Sets) is called an fpqc sheaf on S
if:
(i) We have an isomorphism F (

∐
i∈I Ui) ∼=

∏
i∈I F (Ui), Ui ∈ (Sch/S) compati-

ble with inclusions Ui ↪→
∐

i∈I Ui.
(ii) For every fpqc morphism π : U → T in (Sch/S), we have an isomorphism
F (T ) ∼= {s ∈ F (U) : pr∗1 s = pr∗2 s ∈ F (U ×T U)} via π∗.

Remark. Why do we want to capture some weak form of quasicompactness
anyways? Recall that there exists flat closed immersions Z ↪→ T that are not
open. The example was T = (N∪{∞}) ∼= {1/(n+1) : n ∈ N}∪ {0} over Spec k
with the closed immersion Spec k ↪→ T .
Let Z ↪→ T be any such example, then U = Z ⊔ (T \ Z) → T is flat and
surjective. Take X = U , then U ×T U = U and the identity U → X doesn’t
come from a map T → X.

Remark. There are variants of the notion of fpqc sheaves. One is fppf sheaves,
where we restrict to surjective flat morphisms that are locally finitely presented.
We also have étale sheaves, where we restrict to surjective étale morphisms. All
of these are examples of “sheaves for a Grothendieck topology”.
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Theorem 3.2. Let A→ B be a ring homomorphism. The followings are equiv-
alent:
(i) SpecB → SpecA is flat and surjective.
(ii) For every complex M1 →M2 →M3 of A-modules

0 M1 M2 M3 0

is exact iff

0 M1 ⊗A B M2 ⊗A B M3 ⊗A B 0

Note that the “only if” part of (ii) is just flatness.

Definition 3.4. If any of these holds, we say A→ B is faithfully flat. We say
a morphism X → Y is faithfuly flat if it’s flat and surjective.

Many properties of schemes can then be checked after faithfully flat base
change. For example, if f : X → Y, g : Y ′ → Y are faithfully flat, then f is
smooth iff the base change X ′ = X ×Y Y ′ → Y ′ is smooth.

3.2 Sheaf Cokernel

Suppose now that f : G → H is a morphism of commutative group schemes.
They represent some fpqc sheaves ĥG, ĥH . The cokernel of ĥG → ĥH isn’t
necessarily a sheaf as we’ve seen ([n] : Gm → Gm). Just as for sheaves on
topological spaces, there is a sheafification functor (“fpqc sheafification”) F →
F sh from (Presheaves) to (fpqcSheaves) which is universal for maps into sheaves,
i.e. Hom(Presheaves)(F,G) ∼= Hom(fpqcSheaves)(F

sh, G) for any sheaf G. This would
also be the left-adjoint of the forgetful functor (fpqcSheaves)→ (Presheaves).
The details are as follows: Start with a presheaf F : (Sch/S)→ (Sets).

Definition 3.5. F is a separated presheaf if F (T ) → {s ∈ F (U) : pr∗1 s =
pr∗2 s ∈ F (U ×T U)} is an inclusion for any fpqc U → T .

Define F+ : (Sch/S)→ (Sets) by setting

F+(T ) = lim−→
(Ui→T )

{
s ∈

∏
i

F (Ui) : pr
∗
1 s = pr∗2 s ∈

∏
i

F (Ui ×T Ui)

}

where the direct limit is taken over families of morphisms (Ui → T ) with∐
i Ui → T fpqc.

If F is separated, then F+ is a sheaf. On the other hand, F+ is separated for
any F . So we can set the F sh = (F+)+.
There are, however, some serious set-theoretic issues, since it’s possible that the
collection of families of morphisms we are taking limit over does not necessarily
form a set. There are several standard ways to get around this (introducing
Grothendieck universes, bounding cardinality, using a different topology like
fppf, etc.), which we’ll neither cover nor worry about.

Definition 3.6. The sheaf cokernel coker f of f is the fpqc sheafification of
coker(ĥG → ĥH).
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Example 3.3. Suppose f = [n] : Gm → Gm, then the presheaf cokernel is
R 7→ (R×)/(R×)n. Given any R and a ∈ R×, there always exists some faithfully
flat R→ R′ such that a becomes an nth power in R′ (e.g. R = R[X]/(Xn − a),
which is even free over R), so the sheaf cokernel is 0.

When is the sheaf cokernel representable by a group scheme? The fully
faithful functor (Sch/S) → (fpqcSheaves/S), X 7→ ĥX isn’t an equivalence of
categories – there are plenty of fpqc sheaves that are not representable.
To investigate this, one thing one need to ask is how one might realise the notion
of gluing on fpqc sheaves, and how they compare to gluing of sheaves, schemes,
morphisms, etc.. This relates to the concept of descents.

3.3 Gluing and Descents

How did we glue schemes? We took a family of schemes (Xi)i∈I and Uij ⊂ Xi

open with isomorphisms hij : Uij → Uji such that hii = id and the diagram

Uij ∩ Uik Uji ∩ Ujk

Uki ∩ Ukj

hij

hik
hjk

And we produce a scheme Y with open immersions qi : Xi ↪→ Y with a nice
map

∐
iXi → Y compatible with the hij ’s.

There is a relative version of this. Suppose T = ∪iUi and we have Ui-schemes
fi : Xi → Ui with hij : Xi|Ui∩Uj = f−1

i (Ui ∩ Uj)→ Xj |Ui∩Uj such that hii = id
and hik = hjk◦hij on Ui∩Uj∩Uk. Then there is some Y → T with isomorphisms
qi : Xi → Y |Ui

satisfying hij = q−1
j ◦ qi.

Phrased differently, given f : X =
∐

iXi → U =
∐

i Ui, we have an (U ×T U)-
isomorphism

X ×pr1,U (U ×T U) = X ×T U X ×pr2,U (U ×T U) = U ×T X

U ×T U

∼=

f×idU
idU ×f

So the cocycle condition is just asserting the commutativity of the cocycle dia-
gram

(X ×T U)×T U (U ×T X)×T U

U ×T U ×T X

pr∗12 h

pr∗13 h
pr∗23 h

where h : X ×T U → U ×T X is given by (x, y) 7→ (y, x) (so indeed pr∗12 h =
h× idU ).
The result of gluing is then Y → T with an isomorphism g : X → Y ×T U such
that the gluing diagram

X ×T U U ×T X

Y ×T (U ×T U) (U ×T U)×T Y

h
∼=

∼=q×idU idU ×q∼=

∼=
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commutes.
Now let π : U → T be fpqc and X → U a U -scheme. When can we find a
T -scheme Y → T (the “descent” of X to T ) such that X ∼= Y ×T u?

Example 3.4. Suppose U = SpecK → T = Spec k with K/k a field extension.
For a K-scheme X, we are asking when does there exist a k-scheme Y with
X = Y ×k K and, if so, how many are there.

Definition 3.7. An isomorphism h : X ×T U → U ×T X is a descent datum if
the cocycle diagram commutes. We say h is effective if there exists Y → T and
an isomorphism q : X → Y ×T U such that the gluing diagram commutes.

It’s quite clear that all descent Y of X to T arises from an effective descent
datum. When is a descent datum effective, then?

Example 3.5 (Galois Descent). Suppose K/k is a finite Galois extension with
Galois group G. This gives U = SpecK → T = Spec k. G acts on K from
the left, so we can make it a left action on U by associating each g ∈ G with
gU = (ag)−1 : SpecK → SpecK. Recall that U ×T U =

∐
G U .

A descent datum for a K-scheme X is the same as giving, for each g ∈ G, an
automorphism gX fitting into the commutative diagram

X X

SpecK SpecK

gX
∼=

gU
∼=

such that (gh)X = gXhX for all g, h ∈ G.

Theorem 3.3 (Weil). If X/k is quasiprojective and there exists (gX)g∈G as
above, then there is Y/k with an isomorphism q : X → Y ×k K such that
gX = idY ×gU . Furthermore, (Y, q) is unique up to isomorphism.

Remark. The classical way to express the descent datum in this case is the
diagram

X

Xg X

U = SpecK U

T = Spec k

ϕg

f

gX

f

gU

So to give G → Aut(X), g 7→ gX with f ◦ gX = gU ◦ f is the same as giving,
for all g ∈ G, an isomorphism ϕg : X → Xg with (ϕg)

hϕh = ϕgh, which can be
viewed as a cocycle condition.

Galois descent is a particular case about quotients of schemes by finite
groups, by viewing Y as “the quotient G\X”.
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3.4 Quotients

Theorem 3.4. Suppose X is a scheme and G ⊂ Aut(X) is a finite group.
Suppose that for any x ∈ X, the orbit Gx is contained in an open affine (e.g.
when X is a quasiprojective variety). Then there exists q : X → Y with the
properties that:
(i) q is G-invariant, i.e. ∀g ∈ G, q ◦ g = q, and the fibres of q are G-orbits.
(ii) q is integral.
(iii) For any T , Y (T ) = G\X(T ) (“q is the categorical quotient”).
(iv) (q∗OX)G = OY .

Write Y = G\X (or X/G if the action is on the right). This in particular
implies Theorem 3.3 (take X → U = SpecK, then G\U = SpecKG = Spec k
and Y = G\X → Spec k has X ∼= Y ×k K by (iii)).

Proof. First assume X = SpecB is affine, then G ⊂ Aut(B). Consider Y =
SpecBG with q induced by BG → B. Then (iii) and (iv) are immediate. (ii)
becomes the statement that B is integral over BG, which is true since

∏
g∈G(t−

g(b)) ∈ BG[t]. q is clearly G-invariant as well. The second part of (i) is some
commutative algebra.
As for the general case, we’ll show that X can be covered by G-invariant open
affines. Once we’ve done this, we can simply take the quotient of these affines
by G and glue.
Let x ∈ X. By hypothesis, Gx ⊂ U for some open affine U . Let V =

⋂
g∈G gU

which certainly contains Gx and is G-invariant. V might not be affine, but
as Gx is finite and is contained in an affine open, there is some affine open
V ′ ⊂ V containing Gx (prime avoidance lemma). Now form the intersection
V ′′ =

⋂
g∈G gV

′ which is affine since each gV ′ is affine and U is separated, and
is G-invariant.

Sadly, quotients don’t exist in general.

Example 3.6 (Group Scheme without Galois Descent). Let K be a field and
f : X → U = A1

K a group scheme over U that’s the line with three origins
x0, x1, x2 (so it’s pretty much i∗Z/3Z, i : {0} ↪→ U). Take K = Q(

√
−3) and

k = Q, which has G = Gal(K/k) = {1, g}. Let σ ∈ Aut(X/U) be such that it
fixes x0 and swaps x1, x2 (so it’s [−1] on Z/3Z). This defines an action of G on
X covering the obvious action idA1 ×gSpecK on U by gX = σ × gSpecK . Then
G\U = A1

Q and G\f−1(0) = µ3,Q (noting f−1(0) = SpecQ ⊔ SpecK).

If there exists a scheme quotient h : Y = G\X → A1
Q, then we have h−1(0) =

µ3,Q. So we can choose a nonorigin point y ∈ h−1(0). We must have y ×k K =
{x1, x2} ⊂ f−1(0). As Y is a scheme, there is an open affine V ⊂ Y containing
y. V ×k K ⊂ X then is an open affine of X containing x1, x2 but not x0,
contradiction.
Although this quotient doesn’t exist as a scheme, it does exist as an algebraic
space.

Definition 3.8. Suppose X is an S-scheme and G an S-group scheme. An
action of G on X is a morphism a : G ×S X → X such that for any S-scheme
T , G(T ) × X(T ) → X(T ) is a group action. A free action of G on X is such
that G(T )×X(T )→ X(T ) is a free group action, i.e. has trivial stabilisers.
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The categorical quotient of X by G is an S-morphism q : X → Y which is G-
invariant in the sense that ∀g ∈ G(T ), x ∈ X(T ), qT (gx) = qT (x), and universal
as such in the sense that for any G-invariant q′ : X → Y ′ factors uniquely
through q.
The orbit Gx of x ∈ X is a(pr−1

2 (x)).

Theorem 3.5. Suppose G is finite locally free, acts on X, and Gx is contained
in an open affine for any x ∈ X. Then there exists a categorical quotient
Y = G\X. Moreover, if the action is free, then this is simply the sheaf quotient,
i.e. Y is the quotient of fpqc sheaves.

Theorem 3.6. Suppose G/S is a flat group scheme of finite type with S locally
Noetherian, and H ⊂ G is a closed subgroup scheme also flat over S. If either
dimS ≤ 1 or H is proper over S, then the quotient sheaf is representable.

These conditions are necessary: There is an example with k = F2, S =
A2

k, G = G2
a,S and H ⊂ G is a closed subgroup scheme, étale over S (in fact

H ∼= S ⊔ S \ {0} as a scheme) such that G/H doesn’t exist. If the morphism is
affine, we however do have nice things.

Theorem 3.7. Suppose π : U → T is fpqc and f : X → U is affine. Then
every descent datum for X is effective.

Write X = SpecOU
B with B a quasicoherent sheaf of OU -algebras. So it

suffices to prove descent for quasicoherent sheaves.
Suppose F is a quasicoherent OU -module, then a descent datum for F is es-
sentially an isomorphism g : pr∗1 F → pr∗2 F such that on U ×T U ×T U the
diagram

(pr′1)
∗F (pr′2)

∗F

(pr′3)
∗F

pr∗12 g

∼=

pr∗13 g
pr∗23 g

commutes. Note that if G is a quasicoherent OT -module, then π∗G has a canon-
ical descent datum gtriv : pr∗1 π

∗G → pr∗2 π
∗G as π ◦ pr1 = π ◦ pr2. The theorem

then follows from the following (stronger) statement.

Theorem 3.8. Suppose π : U → T is fpqc, then then Φ : G 7→ (π∗G, gtriv) is an
equivalence of categories between the category of quasicoherent OT -modules and
the category of pairs (F , g) with F a quasicoherent OU -sheaf and g a descent
datum.

Proof. It’s a mere formality to reduce to the case U = SpecB → T = SpecA
with B a faithfully flat A-algebra. Note also that if there is a section s : T → U
of π, then (F , g) 7→ s∗F should be an inverse functor, so the theorem would be
true in this case.
On affines, Φ takes an A-module M to (M ×A B, gtriv), which lives in the
category C of pairs (N, g) with N a B-module and g : N ⊗A B → B ⊗A N an
isomorphism of B ⊗A B-modules. Consider Ψ : C → (ModA) sending (N, g) to
{n ∈ N : g(n ⊗ 1) = 1 ⊗ n} = ker(δg : N → B ⊗A N,n 7→ g(n ⊗ 1) − 1 ⊗ n).
This is a right adjoint to Φ. We want to show that M → ΨΦM,N → ΦΨ(N, g)
are isomorphisms. This can be checked after faithfully flat base change A→ A′
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(where B becomes B′ = A′ ⊗A B). But B is faithfully flat over A, so we can
take A′ = B and SpecB′ = SpecB ⊗A B → SpecA′ = SpecB has a section
given by the diagonal!
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