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0 Introduction

To build financial models and get paid, we clearly need some unrealistic as-
sumptions first.
First of all, we will assume that no dividend will be paid, ever (to be fair is that
even a question at this stage of society, of course we are gonna assume that).
We also assume that we can buy a continuous spectrum of shares because we
want a easy life. Another criminal simplification we’ll use is that there is no
bid-ask spread, i.e. margin between ask price and bid price of a stock. We are
also going to say that our action does not have any price impact, which means
that the scale of our buying and selling would not affect the unit price of a
share (“linear pricing”). We are also gonna take away transaction costs and
short-selling constraints ’coz, y’know, capitalism.
Our standard framework is the following: There are d kinds of risky assets.
The price of asset i at time t will be denoted Si

t . For the next few lectures, we
only care about t ∈ {0, 1} (“one-period models”). Afterwards, we might take
t ∈ {0, 1, . . .} (“discrete-time models”) or t ∈ R≥0 (“continuous models”).
We will in addition assume that an agent can borrow or lend at a constant
interest rate r (“risk-free assets”) so that you can make sense of opportunity
cost and alike.

1 One-Period Models

1.1 The Setup

Let Xt be the wealth of an agent at time t with X0 given. Let θi be the number
of shares of asset i hold by the agent from time 0 to time 1, so θi > 0 implies
that the agent bought θi shares (“long position”) and θi < 0 implies that the
agent is shortselling |θi| shares (“short position”). Asset 0 will denote the risk-
free asset (so θ0 > 0 means depositing and θ0 < 0 means borrowing). We have
the budget constraint

X0 = θ0 +

d∑
i=1

θiSi
0

If we write St = (S1
t , . . . , S

d
t )

⊤, θ = (θ1, . . . , θd)⊤, then the constraint is just
X0 = θ0 + θ⊤S0. At time 1, we have X1 = θ0(1 + r) + θ⊤S1 = (1 + r)X0 +
θ⊤(S1 − (1 + r)S0) by definition.
How would we model X1? X0, r, S0, θ are all assumed to be known at time 0.
We do not know anything about the true value of S1, but we clearly will need
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some information about it in order to get paid, so we are going to (boldly) model
this as a random vector with a known distribution. There is a big industry of
working out what the distribution should be via statistics, which is however not
the focus of this course.

1.2 The Mean-Variance Portfolio Problem

The goal now is to maximise the earning X1 but somehow minimise risk. The
first way to formulate this is known as the mean-variance portfolio problem
(Markowitz 1952): Given X0 = x and target mean m, we want to minimise
VarX1 subject to EX1 = m. Markowitz’s work on this problem won him the
Nobel prize, so it’s reasonable to deduce that he was not a mathematician.
Assume S1 is square integrable. Let µ = ES1, V = covS1 = E((S1 − µ)(S1 −
µ)⊤) = E(S1S

⊤
1 ) − µµ⊤. Different choices of θ will of course yield different

values of (VarX1,EX1). This is a subset of the right half-plane of R2. Its left
side boundary is then the object of interest for the mean-variance problem. It’s
known as the mean-variance efficient frontier.

Definition 1.1. The mean-variance efficient frontier is the set consisting of
points on the plane having the form (min{Var(X1),EX1 = m},m),m ∈ R. A
mean-variance efficient portfolio is a choice of θ that results in a value on the
mean-variance efficient frontier, i.e. a solution to the mean-variance portfolio
problem.

We shall deal with the case where µ ̸= (1 + r)S0 and V is positive definite
(note that it is always nonnegative definite; we use this additional assumption
in order for V −1 to exist). So we want to minimise θ⊤V θ subject to θ⊤(µ− (1+
r)S0) = m− (1 + r)x.

Theorem 1.1. The unique optimal solution to the problem is θ∗ = λV −1(µ −
(1 + r)S0) where

λ =
m− (1 + r)x

(µ− (1 + r)S0)⊤V −1(µ− (1 + r)S0)

Proof. One can verify directly that θ∗ satisfy the desired condition (“feasible”).
Suppose θ ̸= θ∗ is another feasible portfolio, then let ϵ = θ − θ∗ ̸= 0. We have
θ⊤V θ = (θ∗)⊤V θ∗ + ϵ⊤V ϵ + 2ϵ⊤V θ∗. But if θ is feasible then 2ϵ⊤V θ∗ = 0, so
θ⊤V θ = (θ∗)⊤V θ∗ + ϵ⊤V ϵ > (θ∗)⊤V θ∗ as V is positive definite.

Definition 1.2. θmar = V −1(µ− (1 + r)S0) is called the market portfolio.

Corollary 1.2 (The Mutual Fund Theorem). A portfolio is mean-variance
efficient iff it is a scalar multiple of the market portfolio.

Corollary 1.3 (Shape of Mean-Variance Efficient Frontier). The mean-variance
efficient frontier is a parabola with equation v = (m − (1 + r)x)2/((µ − (1 +
r)S0)

⊤V −1(µ−(1+r)S0)) (where (v,m) is the coordinate on the mean-variance
graph).

Corollary 1.4. The accompanying problem of minimising VarX1 subject to
EX1 ≥ m has the same solution as the mean-variance portfolio problem when
m ≥ (1 + r)x (otherwise of course the optimal strategy would be θ = 0).
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1.3 Capital Asset Pricing Model

Proposition 1.5. For square integrable random variables X,Y with VarX > 0,
there exists unique α, β such that Y = α+βX +Z with EZ = 0, cov(Z,X) = 0.

Proof. We can simply solve the system{
0 = EZ = EY − α− β − EX
0 = cov(Z,X) = cov(Y,X)− β cov(X,X)

which yields β = cov(Y,X)/ var(X), α = EY − cov(X,Y )EX/Var(X).

Write Smar
t = (θmar)⊤St (the “price of the market portfolio”).

Theorem 1.6. Let B = cov(S1, S
mar
1 )/Var(S1) and Z = S1 − (1 + r)S0 −

B(Smar
1 − (1 + r)Smar

0 ), then EZ = 0, cov(Z, Smar
1 ) = 0.

So we can write S1 = (1 + r)S0 +B(Smar
1 + (1 + r)Smar

0 ) + Z.

Proof. We have

E(Smar
1 − (1 + r)Smar

0 ) = (θmar)⊤E(S1 − (1 + r)S0)

= (µ− (1 + r)S0)
⊤V (µ− (1 + r)S0)

= (θmar)⊤V θmar = var(Smar
1 )

Also,

cov(S1, S
mar
1 ) = cov(S1, S1)θ

mar = µ− (1 + r)S0 = E(S1 − (1 + r)S0)

Putting these together reveals the results.

The capital asset pricing model (Sharpe 1964) is as follows: Let Ri =
(Si

1/S
i
0) − 1 be the return of asset i. Assume that there is a total of ni shares

of asset i and let n = (n1, . . . , nd)
⊤. Let

Rindex =
n⊤S1

n⊤S0
− 1

Suppose there are K investors and let θk be investor k’s portfolio such that total
demand equals total supply, i.e.

∑
k θ

k = n (“market clearing”).
Assuming that every investor agrees on µ = ES1 and V = VarS1 and everyone
has a mean-variance efficient portfolio (with possibly different target means).

Theorem 1.7. Write Ri − r = αi + βi(Rindex − r) + ϵi such that Eϵi =
0, cov(Rindex, ϵi) = 0 (Proposition 1.5), then αi = 0 for all i.

Proof. Choose λk such that θk = λkθmar, so n = (
∑

k λ
k)θmar, consequently

Rindex = (Smar
1 /Smar

0 )− 1. Then with the preceding theorem,

Ri − r =
1

Si
0

(Si − (1 + r)S0) =
1

Si
0

(Bi(Smar
1 − (1 + r)Smar

0 ) + Zi)

=
BiSmar

0

Si
0

(Rindex − r) +
Zi

Si
0

which is what we wanted.
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Remark. 1. The model gives us some kind of statistical ideas to work with, but
one should note that doing statistics with economics is a little bit hard since
we can’t exactly keep doing the same experiment. There is a whole research
area devoted to obtaining more information about the distribution of the future
price given rather limited amount of information.
2. The standing assumptions under which the model evolves are not completely
what happens in real life. Most of the general simplifications are reasonable,
but the uniform beliefs assumption (i.e. everyone agreeing on ES1 and VarS1)
and uniform preferences assumption (i.e. everyone’s aim is to be mean-variance
efficient) are up for debates.

1.4 Expected Utility Hypothesis

In the mean-variance portfolio problem, we have been dealing with the situa-
tion where we seek the minimisation of variance given a fixed expected return.
This is a pretty restrictive idea, in a way. Maybe we’ll want to use a different
measurement than the variance, and maybe we’ll want to deal with the case
where an agent decide between strategies that have different expected returns
(e.g. they might want to sacrifice return for smaller variance, or vice versa).
Let’s try and find a more general framework to contain these situations, which
we’ll call the expected utility hypothesis: Every agent has a utility function
U = U(X) as a function of the payout, and they would prefer a strategy if it
has a smaller E(U). If two strategies yield the same value of E(U), we say that
the agent is indifferent between them.
Clearly, if we have another utility function Ũ = aU + b for some a > 0, then Ũ
and U would give the same preference. Note also that we only need to know
the marginal distributions of payouts X,Y to decide which one the agent would
prefer.
The hypothesis was actually first proposed by (Daniel) Bernoulli to solve the
St. Petersburg Paradox: Consider the game of tossin a coin until it comes up
heads. If n tosses are required, Person A will pay Person B 2n pounds. What’s
the expected earning of Person A? Infinity. But does it mean that it’s a good
decision for Person A to try and get into the game no matter how much Per-
son B is going to charge them for a game entry? Doesn’t seem so. Bernoulli’s
solution is then to introduce the utility weight on the possible earnings, since
earning 2 zillion pounds compared to earning 1 zillion pounds doesn’t give as
much of happiness as earning 1 zillion pounds compared to earning nothing at
all. 1

Another motivation is what’s known as the von Neumann-Morgenstern utility
theorem.

Definition 1.3. The von Neumann-Morgenstern axioms of decision-making are
the followings statements on preference of distribution functions:
1. (Completeness) Either F ≻ G, F ≺ G or F ∼ G.
2. (Transitivity) If F ≻ G and G ≻ H then F ≻ H.
3. (Independence) If F ≻ G and 0 ≤ p ≤ 1, then pF+(1−p)H ≻ pG+(1−p)H.
4. (Continuity) If F ≻ G ≻ H, then there exists some 0 ≤ p ≤ 1 such that
G ∼ pF + (1− p)H.

1In my opinion, this however is just a non-answer to a non-problem.
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Theorem 1.8. Suppose the von Neumann-Morgenstern axioms are satisfied,
then there exists a utility function U such that

F ≻ G ⇐⇒
∫
Ω

U dF >

∫
Ω

U dG

Having seen enough motivations, let’s now study the consequences of this
hypothesis. To make our lives easier, we will sometimes restrict to the case
where U is increasing, in the sense that if X > Y a.s. then EU(X) > EU(Y )
(or X ≻ Y ). We sometimes also want U to be concave, i.e. U(px+ (1− p)y) ≥
pU(x)+(1−p)U(y) for p ∈ [0, 1] (“a fix amount of money gives one less happiness
when one is rich compared to when one is poor”) which means that the marginal
utility U ′ (when exists) should be decreasing. By Jensen’s inequality, if this is
indeed the case then EU(X) ≤ U(EX) =⇒ EX ≻ X.
For an increasing, concave, twice differentiable utility U , the marginal utility
U ′ > 0 would measure how much the utility increases at the given point, and
U ′′ < 0 would measure the concavity of the utility at the point. They are used
to measure how an agent would prefer certainty over uncertainty.

Definition 1.4. The Arrow-Pratt coefficient of absolute risk aversion at x is
−U ′′(x)/U ′(x); The Arrow-Pratt coefficient of relative risk aversion at x is
−xU ′′(x)/U ′(x).

Example 1.1. A CARA (Constant Absolute Risk Aversion) utility is one that
has constant coefficient of absolute risk aversion, i.e. U(x) = −Ce−γx (for some
constant C > 0 which we will almost always taken as 1 when we talk about
“the” CARA utility) where γ is the said coefficient.
A CRRA (Constant Relative Risk Aversion) utility is one that has constant
coefficient of relative risk aversion, i.e. U(x) = C(1 − R)−1x1−R, x > 0 (for
some constant C > 0 which, again, we will almost always taken as 1 when we
talk about “the” CRRA utility) where R ∈ R>0 \ {1} is the said coefficient.
When the utility has coefficient 1 for constant relative risk aversion, it has to
be a multiple of log (defined on the positive reals). U(x) = log x is called the
logarithmic utility.

Under this setup, we can now formulate the utility maximisation problem:
Given a utility U , how would we maximise EU(X1) subject to X0 = x? Having
nothing better to do, let’s expand the expression to get EU(X1) = EU(x(1 +
r) + θ⊤(S1 − (1 + r)S0)).

Theorem 1.9. If U is suitably nice and θ∗ is optimal, then E(U ′(X∗
1 )(S1−(1+

r)S0)) = 0.

Proof. Differentiate EU(X1) with respect to θ and use dominated convergence
theorem to pass derivative inside E.

Remark. One sufficient niceness condition is U being concave, differentiable,
and U(x(1 + r) + θ⊤(S1 − (1 + r)S0)) is integrable for all θ in a neighbourhood
of θ∗.

It seems that there’s nothing more we can do. Fearing losing our jobs, we
introduce new definitions so as to appear to be doing something.

Definition 1.5. The state price density (or pricing kernel) is a positive random
variable Z such that EZ = 1/(1 + r) and E(ZS1) = S0
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The terminology “pricing kernel” is easy to understand: Adjoining it (and
taking the expectation) brings S1 back to S0. But why is it also called the state
price density? Consider a market model on the asset space/sample space Ω =
{ω1, . . . , ωd} with Si

1 = 1{ωi}. (S1
1 , . . . , S

d
1 ) are called Arrow-Debreu securities.

So if Z is a state price density, then easily Z(ωi) = Si
0/P{ωi} which justified

the name.
Now we can rephrase our previous theorem to get

Theorem 1.10. Z = U ′(X∗
1 )/((1 + r)EU ′(X∗

1 )) is a state price density.

1.5 Risk-Neutral Measures

Given a probability space (Ω,F ,P), and Y : F → R>0 be a positive (as in
a.s. positive) random variable with expected value EY = EPY = 1. Let Q :
F → [0, 1] be such that Q(A) = EP(Y 1A), then the monotone convergence
theorem shows that Q is also a probability measure on (Ω,F). Also, P(A) = 0
iff Q(A) = 0 (hence P(A) = 1 iff Q(A) = 1, P(A) > 0 iff Q(A) > 0, P(A) < 1 iff
Q(A) < 1).

Definition 1.6. Probability measures on the same measurable space are equiv-
alent if they have the same null sets (i.e. sets with probability 0).

Can there be equivalent probability measures that would not arise in the
way we described previously?

Theorem 1.11 (Radon-Nikodym). P,Q are equivalent iff there exists a positive
random variable Y (P,Q-a.s. unique) such that Q(A) = EP(Y 1A).

So we are all good. For equivalent P,Q, we write P ∼ Q and Y = dQ/dP
(“the density of Q with respect to P”). Y is also known as the Radon-Nikodym
derivative or likelihood ratio.

Example 1.2. Suppose Ω = {ω1, . . . , ωn} and P ∼ Q with P{ωi} > 0 for all i,
then Y {ωi} = Q{ωi}/P{ωi}.

If Z is Q-integrable (i.e. EQ(|Z|) < ∞), then EQ(Z) = EP(Y Z) (using the
dominated convergence theorem). Also, if Ef(X) = Ef(Y ) for all bounded f ,
then X,Y have the same law.

Example 1.3. Let X ∼ N (µ, σ2) under P and Y = eX−µ−σ2/2, then Y > 0
and EPY = 1. Suppose Q(A) = EP(Y 1A), then for any bounded f ,

EQf(X) = EP(eX−µ−σ2/2f(X)) = EP(f(X + σ2))

So X ∼ N (µ+ σ2, σ2) under Q, i.e. the law of X under Q is exactly the law of
X + σ2 under P.

Definition 1.7. Given a market model, a risk-neutral measure is a probability
measure Q equivalent to the original probability measure P such that EQ(S1/(1+
r)) = S0.

So Q is risk-neutral iff (dQ/dP)/(1 + r) is a state price density.
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Example 1.4 (Utility Maximisation in the Binomial Model). Consider d = 1
(i.e. there is only one kind of risk asset) and P(S1 = (1+b)S0) = p = 1−P(S1 =
(1 + a)S0). A risk neutral measure Q (say with Q(S1 = (1 + b)S0) = q =
1 − Q(S1 = (1 + a)S0)) would satisfy EQS1 = (1 + r)S0, or qS0(1 + b) + (1 −
q)S0(1+a) = (1+r)S0 =⇒ q = (r−a)/(b−a). So a risk-neutral measure exists
iff a < r < b, in which case it is unique and is given by the above discussion.
Consider a increasing, concave, differentiable utility U . We want to maximise
EU(X1) subject to X0 = x where X1 = (1+r)x+θ(S1−(1+r)S0). The optimal
portfolio, as we’ve seen, has U ′(X∗

1 ) is proportional to the state price density,
which is proportional to the risk-free measure, if exists. So{

U ′(x(1 + r) + θ∗S0(b− r)) = (λ/p)((r − a)/(b− a))

U ′(x(1 + r) + θ∗S0(a− r)) = (λ/(1− p))((b− r)/(b− a))

for some proportionality constant λ > 0. This simplifies to

U ′(x(1 + r) + θ∗S0(b− r))

U ′(x(1 + r) + θ∗S0(a− r))
=

(r − a)(1− p)

(b− r)p

1.6 Contingent Claim Pricing

We are back to our usual model with d assets of prices S0, S1 and interest rate
r (the “fundamental market”), except this time we add a contingent claim, i.e.
an extra asset with payout Y at time 1. We want to know how to correctly price
this new asset at time 0. Usually Y is taken to be g(S1) for some function g.
One important example of this is the call option, which is the right (but not the
obligation) to buy an asset at a predetermined price K at time 1. Of course, if
S1 > K then it’s rational to exercise the right, and if S1 ≤ K then it’s rational
not to, so the payout has the form

Y = (S1 −K)+ =

{
S1 −K if S1 > K

0 otherwise

We will write X (x) = {(1+ r)x+ θ⊤(S1− (1+ r)S0) : θ ∈ Rd} to denote the set
of possible time 1 wealth in the fundamental market (i.e. without the contingent
claim) fixing the times 0 wealth x. An agent with utility U and X0 = x would
be willing to buy the claim at time 0 for price π if there exists X∗ ∈ X (x− π)
with EU(X∗ + Y ) ≥ EU(X) for all X ∈ X (x).

Definition 1.8. The utility indifference price (or the reservation bid price)
π = π(Y ) of payout Y is the largest π such that

sup{EU(X + Y ) : X ∈ X (x− π)} ≥ sup{EU(X) : X ∈ X (x)}

Remark. 1. Note thatX ∈ X (x−π) iffX+(1+r)π ∈ X (x), so sup{EU(X∗+Y ) :
X∗ ∈ X (x− π)} = sup{EU(X − (1 + r)π + Y ) : X ∈ X (x)}.
2. If π(Y ) is the indifference bid price, then −π(−Y ) is known as the indifference
ask price, i.e. the fair price one should sell the contingent claim for.

Fix the initial wealth x and utility function U that is assumed to be increas-
ing, concave and differentiable. We will only be interested in the case where the
payout of the contingency claim is in the (convex) set of random variables Y
such that for every π, there exists an optimal solution of maximising EU(X+Y )
subject to X ∈ X (x− π).

8



Theorem 1.12. Y 7→ π(Y ) is concave.

Remark. In other words, the theorem is saying that π(tY1+(1−t)Y0) ≥ tπ(Y1)+
(1− t)π(Y0), i.e. an investor will value diversification.

Proof. FY (π) = sup{EU(X+Y ) : X ∈ X (x−π)} is decreasing and continuous.
We also have FY (±∞) = U(∓∞) and π = π(Y ) is the unique solution to
FY (π) = F0(0).
Fix payouts Y0, Y1 and Yt = tY1 + (1 − t)Y0. Let Xt = X be the maximiser of
EU(X + Yt) subject to X ∈ X (x− π(Yt)).

FYt
(π(Yt)) = F0(0) = tFY1

(π(Y1)) + (1− t)FY0
(π(Y0))

= tEU(X1 + Y1) + (1− t)EU(X0 + Y0)

≤ EU(tX1 + (1− t)X0 + Yt) ≤ FYt
(tπ(Y1) + (1− t)π(Y0))

This means that π(Yt) ≥ tπ(Y1) + (1− t)π(Y0) as FYt
is decreasing.

Observe that t 7→ π(tY )/t is decreasing by concavity. Let πt = π(tY )/t and
we define π0 as the limit of πt as t ↓ 0.

Theorem 1.13.

π0 =
E(U ′(X0)Y )

(1 + r)EU ′(X0)

where X0 = X is the maximiser of EU(X) subject to X ∈ X (x).

Remark. This means that, when t is small, then the indifference price is almost
linear, so the state price density is proportional to the marginal utility of the
optimal time 1 wealth in the fundamental market.

Lemma 1.14. If X∗ = X maximises EU(X + Y ) subject to X ∈ X (x), then
E(U ′(X∗ + Y )(S1 − (1 + r)S0)) = 0.

Proof. Analogous to Theorem 1.9.

Hence E(U ′(X∗ + Y )(X∗ −X)) = 0 for all X ∈ X (x).

Lemma 1.15 (Supporting Hyperplane). Suppose that U is concave and differ-
entiable, then U(y)− U(x) ≤ U ′(x)(y − x).

Proof. Suppose x < x+ ϵ < y, then

U(y)− U(x)

y − x
≤ U(x+ ϵ)− U(x)

ϵ

by concavity. Sending ϵ → 0 shows the result.

Proof of Theorem 1.13. Suppose Xt = X maximises EU(X + tY ) subject to
X ∈ X (x− tπt) = X (x− π(tY )), then

0 =
E(U(Xt + tY )− U(X0))

t
≥ E(U(X0 − tπt(1 + r) + tY )− U(X0))

t

≥ E(U(X0 − tπ0(1 + r) + tY )− U(X0))

t
→ E(U ′(X0)(Y − (1 + r)π0))
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by dominated convergence theorem. So E(U ′(X0)(Y − (1 + r)π0)) ≤ 0. Con-
versely, by the preceding lemma,

0 =
E(U(Xt + tY )− U(X0))

t
≤ E(U ′(X0)(Xt + tY −X0))

t

= E(U ′(X0)(Y − (1 + r)πt)) +
1

t
E(U ′(X0)(Xt + tπt(1 + r)−X0))

= E(U ′(X0)(Y − (1 + r)πt))

by Lemma 1.14. This means that E(U ′(X0)(Y−(1+r)π0)) ≥ 0, so E(U ′(X0)(Y−
(1 + r)π0)) = 0. The theorem follows.

1.7 Arbitrage; Fundamental Theorem of Asset Pricing

We now move away from the theory of contingent claims and go back to the
fundamental market. Daydreaming, we want to earn money in the market with
positive probability but no risk.

Definition 1.9. A portfolio ϕ is an arbitrage if and only if ϕ⊤(S1−(1+r)S0) ≥ 0
a.s. and P(ϕ⊤(S1 − (1 + r)S0) > 0) > 0.

Remark. The definition of arbitrage does not depend on utility functions nor
initial wealth, but it does depend on the probability measure P (the “belief”).
If you squint hard enough, you’ll realise that it only depends on P through its
null sets. So equivalent probability measures have the same set of arbitrages.

Consider the utility maximisation problem with a increasing utility function
U and an arbitrage ϕ, then for any portfolio θ, (1+r)x+(θ+ϕ)⊤(S1−(1+r)S0) ≥
(1 + r)x + θ⊤(S1 − (1 + r)S0) a.s. and strict inequality happens with positive
probability. If we then take the (U -weighted) expected value, then we get

EU((1 + r)x+ (θ + ϕ)⊤(S1 − (1 + r)S0)) > EU((1 + r)x+ θ⊤(S1 − (1 + r)S0))

which contradicts the optimality of θ, not that anyone is surprised. So the
existence of an arbitrage means that the utility maximisation problem does
not have a solution. In other words, if the utility maximisation problem has a
solution, then there cannot be an arbitrage.
So when an arbitrage does exist, then a investor will just buy any amount
of asset as a multiple of the arbitrage, which is sadly incompatible with the
standing assumption of linear pricing – not that we can’t do maths with it.
Recall that if there exists a solution to the utility maximisation problem, then
there exists a risk-neutral measure, namely the one induced by

dQ
dP

=
U ′(X∗

1 )

EU ′(X∗
1 )

Theorem 1.16 ((First) Fundamental Theorem of Asset Pricing). The nonex-
istence of arbitrage is equivalent to the existence of a risk-neutral measure.

Proof. Suppose there exists a risk-neutral measure Q and an arbitrage ϕ, then
ϕ⊤(S1 − (1 + r)S0) ≥ 0 P-a.s. (hence Q-a.s.). We will show that ϕ⊤(S1 − (1 +
r)S0) = 0 P-a.s. which will give a contradiction. EQ(ϕ⊤(S1 − (1 + r)S0)) =
ϕ⊤EQ(S1 − (1 + r)S0) = 0 by risk-neutrality of Q. So ϕ⊤(S1 − (1 + r)S0) = 0
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Q-a.s. (pigeonhole principle or whatever it’s called), hence P-a.s. as desired.
Conversely, suppose there is no arbitrage, we shall construct a risk-neutral mea-
sure. Let ξ = S1−(1+r)S0. Assume WLOG that (ξi)i are linearly independent
(if not, take a maximal linearly independent subset and everything works out

nicely) and that Ee−θ⊤ξ is finite for all θ ∈ Rd (if not, replace P by P̃ with

dP̃/dP ∝ e−∥ξ∥2

).

Let (θn)n be a sequence such that Ee−θ⊤
n ξ → infθ Ee−θ⊤ξ. If (θn)n is bounded,

then by Bolzano-Weierstrass, we can assume WLOG (by passing to a subse-

quence) that (θn)n converges, say to θ0. Then Ee−θ⊤
n ξ → Ee−θ⊤

0 ξ by the conti-

nuity of moment generating functions. That is, θ0 = θ minimises Ee−θ⊤ξ, hence
E(e−θ0⊤ξξ) = 0, so there is a risk-neutral measure Q derived from dQ/dP ∝
e−θ⊤

0 ξ.
What if (θn)n is unbounded? WLOG ∥θn∥ → ∞. ϕn = θn/∥θn∥ is bounded
and hence WLOG converges to some ϕ0 with ∥ϕ0∥ = 1. We shall show that
ϕ⊤
0 ξ ≥ 0 a.s. which will mean that ϕ⊤

0 ξ = 0 a.s. by the nonexistence of arbi-
trage. This will, by the linear independence of (ξi)i, mean that ϕ0 = 0 which is
a contradiction.
To show the inequality, observe that for large enough n we have 1 = Ee−0 ≥
Ee−θ⊤

n ξ = Ee−∥θn∥ϕ⊤
n ξ. For r, ξ > 0, there is some N ∈ N such that ∥ϕn−ϕ0∥ ≤

ξ/(2r) for all n ≥ N . When ϕ⊤
0 ξ < −ϵ, ∥ξ∥ < r, we have ϕ⊤

n ξ = (ϕn − ϕ0)
⊤ξ +

ϕ⊤
0 ξ ≤ ∥ϕn − ϕ0∥∥ξ∥+ ϕ⊤

0 ξ ≤ −ϵ/2, so

1 ≥ Ee−∥θn∥ϕ⊤
n ξ ≥ Ee−∥θn∥ϕ⊤

n ξ1ϕ⊤
0 ξ<−ϵ,∥ξ∥<r ≥ eϵ∥θn∥/2P(ϕ⊤

0 ξ < −ϵ, ∥ξ∥ < r)

Consequently P(ϕ⊤
0 ξ < −ϵ, ∥ξ∥ < r) → 0 as n → ∞. So P(ϕ⊤

0 ξ < 0) = 0 which
is what we wanted.

1.8 No-Arbitrage Pricing

In the contingency claim model, we must know about the utility U and initial
wealth x to obtain the indifference pricing. This is fine for theory, but not
very computationally efficient. We now introduce a new pricing method of
contingency claims that is comparatively easier to calculate.

Theorem 1.17. Given a fundamental market with no arbitrage. Suppose we
augment the market by adding a contingency claim with payout Y and initial
price π. Then there is no arbitrage in the augmented market iff π = (1 +
r)−1EQ(Y ) where Q is a risk-neutral measure in the fundamental market.

Proof. By Theorem 1.16, the claim is equivalent to the existence of an equivalent
measure Q with EQ((S1, Y )⊤)/(1+r) = (S0, π)

⊤. The first row is saying that Q
has to be risk-neutral for the fundamental market, and the second row is exactly
the identity claimed in the theorem.

Theorem 1.18. The set of all possible no-arbitrage prices π is an interval.

Proof. Suppose Q0 and Q1 are risk-neutral for the fundamental market giving
no-arbitrage prices π0 and π1 respectively. Then Qt = tQ1 + (1 − t)Q0 is also
risk-neutral for all 0 ≤ t ≤ 1. So πt = (1 + r)−1EQt(Y ) = tπ1 + (1 − t)π0 is a
no-arbitrage price.
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Definition 1.10. A contingency claim Y is called attainable if there exists
some a ∈ R and b ∈ Rd with Y = a+ b⊤S1.

That is, Y = X (y) where y = (1 + r)−1a+ b⊤S0.

Theorem 1.19. The unique no-arbitrage price at an attainable claim with pay-
out Y ∈ X (y) is π = y.

Proof. π = EQ(Y )/(1 + r) for some risk-neutral Q. By risk neutrality we have
EQ(Y ) = EQ(a+ b⊤S1) = a+ (1 + r)b⊤S0.

Example 1.5. For d = 1, r = 0, S0 = S1
0 = 5 and S1 = S1

1 equals either 4 or
7, each with probability 1/2. Let Y be a “strike 6” call option, i.e. you get to
buy the stock with price 6 at time 1, so the payout Y has is either 0 or 1, each
with probability 1/2. Y is actually attainable, since Y = (−4 + S1)/3. So the
unique no-arbitrage price for Y is 1/3. Why? Suppose the time 0 price for Y
is π > 1/3, an arbitrage can be obtained by buying 1/3 stock and selling 1 call.
On the other hand, if the price is π < 1/3, then selling 1/3 stock and buying 1
call would be an arbitrage.
Suppose we have S1 = 7 with risk-neutral probability p and S1 = 4 with
risk-neutral probability q = 1 − p, then since EQ(S1)/(1 + r) = S0 we have
p = 1/3, q = 2/3. This is another justification of the no-arbitrage price being
1/3 and demonstrated the duality between arbitrages and risk-neutral measures
guaranteed by Theorem 1.16.

Theorem 1.20. If a contingent claim has a unique no-arbitrage price, then it
is attainable.

Proof. Example sheet.

1.9 Complete Models

Definition 1.11. A market model is called complete if every contingent claim
is attainable.

Theorem 1.21. In a complete market model, S1 can take at most d+1 values.

Proof. For any disjoint events A1, . . . , An, the indicators 1Ai
are clearly lin-

early independent. By completeness, since 1Ai
is a random variable, 1Ai

=
ai + b⊤S1 for some ai ∈ R, bi ∈ Rd. In particular, Span{1A1

, . . . , 1An
} ⊂

Span{1, S1
1 , . . . , S

d
1}, so n ≤ d+ 1 and we are done.

Theorem 1.22 (Second Fundamental Theorem of Asset Pricing). A market
model with no arbitrage is complete iff there is a unique risk-neutral measure.

Proof. Suppose the market is complete and Q0,Q1 are risk-neutral, then let
Y = dQ1/dP − dQ0/dP. Choose a, b such that Y = a + b⊤S1, then EQi(Y ) =
a + b⊤S0(1 + r) for both i, so EP(Y 2) = EQ1(Y ) − EQ0(Y ) = 0, so necessarily
Y = 0 a.s., i.e. the risk-neutral measure is unique.
Conversely, suppose the risk-neutral measure is unique, then every claim has a
unique no-arbitrage price, so every claim is attainable by Theorem 1.20.
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2 Multi-Period Models

2.1 Motivation

How would we model a market with more than one period? Say if we want
to model a 2-period market, then as usual S0 should be given. S2 is certainly
random, but S1 should be random at t = 0 but is no longer random at t ≥ 1.
This is a problem in general: We need to model the phenomenon that the price
random variables lose their randomness as time goes on (i.e. as we obtain more
information about the market).
The idea is the following: Suppose G is some collection of events (with some good
set-theoretic properties), representing a certain set of information, then natu-
rally we will want to say an event A becomes certain after G (“G-measurable”)
if P(A|G) ∈ {0, 1}.

Example 2.1. Suppose we toss a coin twice. Let G be the information available
after the first toss, then then event {HH,HT} would become certain after G
but {TT} would not.

What do we want from this notion of G-measurability? Naturally, ∅ should
be G-measurable. ALso, if A is G-measurable, we also want Ac to be G-
measurable. Also, if A1, A2, . . . are G-measurable, we certainly also want

⋃
n An

to be measurable.

2.2 Some Basic Measure Theory

Despite having used these notions implicitly already, let’s recall again what some
of them mean.

Definition 2.1. Let Ω be a set. A σ-algebra on Ω is a nonempty collection G
of subsets of Ω such that:
1. ∅ ∈ G.
2. A ∈ G =⇒ Ac ∈ G.
3. A1, A2, . . . ∈ G =⇒

⋃
n An ∈ G.

Example 2.2. 1. {∅,Ω} is called the trivial σ-algebra and contains no infor-
mation.
2. 2Ω is also a σ-algebra, and it can be interpreted as a set of all information.

Definition 2.2. A random variable (i.e. a function) X : Ω → R is called G-
measurable if X−1(B) ∈ G whenever B ∈ B, where B is the Borel σ-algebra on
R. 2

Remark. It is easy to show (given that you know how B is constructed) X is G-
measurable iff {X ≤ x} ∈ G for all x ∈ R. It is also equivalent to {X < x} ∈ G
for all x ∈ R.

Example 2.3. If X is {∅,Ω}-measurable, then X is not random (i.e. is con-
stant).

Definition 2.3. The σ-algebra generated by a random variable X : Ω → R,
denoted as σ(X), is the collection of all events of the form X−1(B), B ∈ B

2Stay calm and do a course in measure theory.
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One can easily verify that this is indeed a σ-algebra.

Theorem 2.1. If Y is σ(X)-measurable, then there exists a (Borel measurable)
function g such that Y = g(X).

Proof. Lol.

Remark. The converse is also true: g(X) is σ(X)-measurable whenever g : R →
R is Borel measurable.

Given a probability space (Ω,F ,P) (where F is a σ-algbera on Ω), let G ∈ F
be an event with P(G) > 0. Recall that the conditional expectation of an event
A ∈ G is defined by P(A|G) = P(A ∩ G)/P(G). This inspires us to define the
conditional expectation of a random variable X (implicitly assumed to be F-
measurable and P-integrable) given G ∈ F to be E(X|G) = E(X1G)/P(G).
Now suppose we have some other random variable Y taking values in a discrete
set, we can make sense of a function constructed as f(y) = E(X|Y = y). This
has the “projection property”: For any bounded σ(Y )-measurable Z, we have
E(XZ) = E(f(Y )Z) by the preceding theorem.
Motivated by this,

Definition 2.4. Given a random variable X (F-measurable and P-integrable)
and a σ-algebra G ⊂ F . A random variable X̃ is called a conditional expectation
of X given G iff it is G̃-measurable and E(XZ) = E(X̃Z) for any bounded, G-
measurable Z.

Proposition 2.2. The conditional expectation of X given G exists and is a.s.
unique.

Proof. Existence is, as expected (pun intended), omitted.
Suppose X̃0, X̃1 are conditional expectations of X given G, then E(X̃0Z) =
E(XZ) = E(X̃1Z) for any bounded G-measurable Z. Let Z = 1X̃0<X̃1

, then the

identity means that E((X̃1 − X̃0)1X̃0<X̃1
) = 0, so P(X̃0 < X̃1) = 0. Symmetri-

cally P(X̃0 > X̃1) = 0, so X̃0 = X̃1 a.s..

So we can confidently write E(X|G) to denote the conditional expectation
of X given G.

Definition 2.5. For random variables X,Y , the conditional expectation of X
given Y is defined as E(X|Y ) = E(X|σ(Y )).

Proposition 2.3. Suppose X is square-integrable and let X̃ = E(X|G) for
some σ-algebra G, then E((X − X̃)2) ≤ E((X − Z)2) for all square-integrable
G-measurable Z.

Proof. E((X − Z)2) = E((X − X̃)2) + 2E((X − X̃)(X − Z)) + E((X̃ − Z)2).
E((X − X̃)(X̃ − Z)) = 0 as X̃ − Z is G-measurable by the projection property
(which technnically only works for bounded X̃ − Z but we can extend using
measure theoretic arguments) which gives the result.

So in a sense X̃ is the “best prediction of X given G”.
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Proposition 2.4. Suppose all conditional expectations of interest here are well-
defined.
(i) E(X + Y |G) = E(X|G) + E(Y |G).
(ii) If Y is already G-measurable, then E(XY |G) = Y E(X|G).
(iii) If X is a.s. nonnegative, then E(X|G) is also a.s. nonnegative.
(iv) Suppose X is independent of G (in the sense that any A ∈ σ(X) and G ∈ G
are independent). Then E(X|G) = EX.
(v) (Jensen’s Inequality) If f is convex, then E(f(X)|G) ≥ f(E(X|G)) a.s..
(vi) (Tower Property) Suppose G ⊂ H are σ-algebras and X is integrable, then
E(E(X|G)|H) = E(E(X|H)|G) = E(X|G).

Proof. For (i), let X̃ = E(X|G) and Ỹ = E(Y |G), then for all bounded G-
measurable W we have E((X̃+ Ỹ )W ) = E((X+Y )W ), so X̃+ Ỹ = E(X+Y |G)
by uniqueness. (ii) is similar. (iii) follows from interpreting E(X1E(X|G)<0) =
E(E(X|G)1E(X|G)<0). (iv) is immediate from definiton. To see (v), we use the
fact that any convex f admits some λ = λ(x) such that f(y) ≥ f(x)+λ(x)(y−x)
(a more general form of Lemma 1.15). (vi) is again just checking definitions.

Example 2.4. Suppose (An)n is a countable collection of events partitioning
Ω with P(Ai) > 0. Then G = {

⋃
i∈I An : I ⊂ N} is a σ-algebra and a random

variable Y on Ω is G-measurable iff it is constant on each Ai. Also, if Y takes dis-
tinct values on distinct Ai’s, then G = σ(Y ). We have E(X|G) =

∑
i E(X|Ai)1Ai

which equals E(X|Y ) =
∑

i E(X|Y = yi)1Y=yi when σ(Y ) = G.

2.3 Martingales

Definition 2.6. A filtration on Ω is an increasing sequence (Fn)n of σ-algebras
(i.e. F0 ⊂ F1 ⊂ · · · ) on Ω.

By convention, F0 = {∅,Ω} is the trivial σ-algebra.
We want to use the idea of filtration to capture the intuition of a random process
whose information is gradually revealed over time.

Definition 2.7. A (discrete-time) stochastic process (Xn)n is just a sequence
of random variables.

Definition 2.8. A stochastic process (Xn)n is adapted to a filtration (Fn)n if
Xn is Fn-measurable for all n ≥ 0.

Our convention that F0 is trivial means that X0 is not random, if (Xn)n is
adapted to (Fn)n. Note also that E(Z|F0) = EZ for any random variable Z.

Definition 2.9. The filtration (Fn)n generated by a given stochastic pro-
cess (Xn)n is defined by Fn = σ(X0, . . . , Xn) (the σ-algebra generated by
X0, . . . , Xn), i.e. the smallest filtration to which the process (Xn)n is adapted.

Definition 2.10. A stochastic process (Xn)n is a martingale with respect to a
filtration (Fn)n if Xn is integrable for every n and E(Xn|Fn−1) = Xn−1.

Proposition 2.5. The followings are equivalent:
(i) (Xn)n is an (Fn)n-martingale.
(ii) (Xn)n is adapted to (Fn)n and E(Xn −Xn−1|Fn−1) = 0 for all n ≥ 1.
(iii) E(Xn|Fm) = Xm for all 0 ≤ m ≤ n.
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The third equivalent condition will allow us to generalise this theory to
continuous-time.

Proof. The only nontrivial implication is that (i) =⇒ (iii), which follows from
the tower property E(Xm+k|Fm) = E(E(Xm+k|Fm+k−1)|Fm).

Example 2.5. 1. Suppose Ω = {HH,HT, TH, TT} is the sample space of
flipping two (fair) coins. Let F0 = {∅,Ω},F1 = {∅,Ω, H = {HH,HT}, T =
{TH, TT}} and Fn = 2Ω for n ≥ 2. Suppose (Xn)n is a stochastic process
adapted to (Fn)n, then X0 is constant, X1 can take 2 values, and X2 can take
4 values. The branching happens exactly with the information of the two coin
tosses being given. If (Xn)n is a martingale and X2(HH) = a,X2(HT ) =
b,X2(TH) = c,X2(TT ) = d, then necessarily X1(H) = (a + b)/2, X1(T ) =
(c+ d)/2 and X0 = (a+ b+ c+ d)/4 = EX2.
One can generalise the moral of this example to the infinite coin-tossing space
by considering filtration generated by (Yn)n where Y0 = 0 and Yn is the indica-
tor of the success of the nth tossing.
2. Let Z be integrable and (Fn)n be a filtration. Let Xn = E(Z|Fn), then
(Xn)n is an (Fn)n-martingale (in a way, this is similar to the previous exam-
ple in spirit). The integrability of Xn is due to Jensen’s inequality: E|Xn| ≤
E(E(|Z||Fn)) = E|Z| < ∞. For the martingale property, suppose m < n, then
by the tower property we have E(Xn|Fm) = E(E(Z|Fn)|Fm) = E(Z|Fm) = Xm.

The above examples are backward-in-time constructions of martingales. We
can also construct them in a forward-in-time fashion.

Example 2.6. 1. Let (Xn)n be independent and integrable with EXn = 0 for
all n. Let S0 = 0 and Sn = X1 + · · ·+Xn, then Sn is a martingale with respect
to the filtration (Fn)n generated by (Xn)n. Indeed, Sn must be Fn-measurable,
so (Sn)n is adapted to (Fn)n. Clearly each Sn must be integrable by triangle
inequality, so we can safely calculate E(Sn − Sn−1|Fn−1) = E(Xn|Fn−1) =
E(Xn) = 0.
2. Let (Xn)n be independent and integrable with EX = 1 for all n. Let (Fn)n
be the filtration generated by (Xn)n, then the stochastic process (Mn)n given
by M0 = 1,Mn = X1 · · ·Xn is an (Fn)n-martingale.

Why are we interested in martingales in finance?

Definition 2.11. For a multi-period model with prices (Sn)n≥0 and interest
rate r, a probability measure Q is risk-neutral if it is equivalent to the original
measure and Sn/(1+ r)n is a martingale under Q (with a filtration fixed by the
model).

We will show an analogue of Theorem 1.16: The existence of a risk-free
measure is equivalent to the non-existence of multi-period arbitrages (which
we’ll define in a moment).

2.4 Stopping Time

Definition 2.12. A stopping time for a filtration (Fn)n is a random variable
T taking values in {0, 1, 2, . . .} ∪ {∞} such that the {T ≤ n} ∈ Fn for all n.
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Example 2.7. 1. Suppose (Xn)n is adapted to (Fn)n, then T = inf{n ≥
0 : Xn > 0} (with the convention that inf ∅ = ∞) is a stopping time since
{T ≤ n} =

⋃n
k=0{Xk > 0} ∈ Fn.

2. (non-example) Not everything is a stopping time. Let (Xn)n be as above
and T = sup{n ≥ 0 : Xn > 0}, then {T ≤ n} =

⋂∞
k=n+1{Xk ≤ 0} which isn’t

in general Fn-measurable.

Definition 2.13. Given a process X = (Xn)n and a random variable T , the
process XT (“X but it stopped at T”) is defined by

XT
n = Xn∧T = Xmin{n,T} = X0 +

n∑
k=1

1k≤T (Xk −Xk−1)

As intuition suggests, we are usually interested in the case where T is a
stopping time with respect to some filtration that X adapts to.

Proposition 2.6. (i) When X is integrable (in the sense that each Xn is inte-
grable), so is XT .
(ii) Suppose X is adapted to a filtration (Fn)n to which T is a stopping time,
then XT is also adapted to (Fn)n.

Proof. (i) Triangle inequality.
(ii) 1k≤T is Fn-measurable for any 1 ≤ k ≤ n since {k ≤ T} = {T ≤ k − 1}c ∈
Fk−1 ⊂ Fn.

Theorem 2.7 (Optional Sampling Theorem). Fix a filtration (Fn)n. Suppose
X is a martingale and T is a stopping time, then XT is also a martingale. In
particular, if T is a.s. bounded, then EXT = X0 (recall that X0 is a.s. constant
by the cconvention that F0 = {∅,Ω}).

Proof. We already know that XT is integrable and adapted. It remains to check
that E(XT

n −XT
n−1|Fn−1) = 0. Indeed,

E(XT
n −XT

n−1|Fn−1) = E(1n≤T (Xn −Xn−1)|Fn−1)

= 1n≤TE(Xn −Xn−1|Fn−1) = 0

since {n ≤ T} = {T ≤ n− 1}c ∈ Fn−1 and X is a martingale.
When T is a.s. bounded, there exists some N such that T ≤ N a.s.. So
EXT = EXT∧N = EXT

N = X0 as XT is a martingale.

Proposition 2.8. Let X be a simple symmetric random walk on Z starting at
X0 = 0, which is a martingale with respect to the filtration generated by it. Let
T = inf{n ≥ 1 : Xn ∈ {−a, b}} for integers −a < 0 < b, then

P(XT = −a) =
b

a+ b
= 1− P(XT = b)

Proof. It is very tempting to write (−a)P(XT = −a) + bP(XT = b) = E(XT ) =
X0 = 0 using the preceding theorem, but T is not bounded. The proposition is
true regardless, which can be proved either using elementary methods or with
dominated convergence theorem, which we’ve quoted a few times already but
nonetheless stated below.
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Theorem 2.9 (Dominated Convergence Theorem). Suppose (Zn)n is a se-
quence of random variables such that Zn → Z a.s. and |Zn| ≤ Y for some
fixed integrable random variable Y , then EZn → EZ.

Example 2.8 (Non-example). The requirement that T is bounded is necessary,
although it didn’t cause problem in the preceding proposition since it was in a
form where we can use dominated convergence theorem. When T behaves badly,
however, problems can occur: If one take instead that T = inf{n ≥ 0 : Xn = b}
(i.e. taking a = ∞), then by techniques from Markov chains we know that
XT = b a.s., but then E(XT ) = b ̸= 0.

Theorem 2.10 (Optional Stopping Theorem). Fix a filtration (Fn)n (again
with the convention that F0 = {∅,Ω}). Let X be a martingale and T a stopping
time. Suppose there is an integrable random varible Y with |XT

n | ≤ Y for all n,
then XT

n → XT as n → ∞ and EXT = X0.

Proof. The convergence when T is a.s. finite is clear. The general case uses
the martingale convergence theorem, which exceeds the scope of this course.
E(XT ) = X0 is a consequence of Theorem 2.7 and the dominated convergence
theorem.

Let’s state some more measure theoretical result which we will not prove.

Theorem 2.11 (Monotone Convergence Theorem). If 0 ≤ Xn ≤ Xn+1 a.s. for
all n, then limn→∞ EXn = E(limn→∞ Xn).

Example 2.9. Let X be the simple symmetric random walk on Z and T =
inf{n ≥ 0 : Xn ∈ {−a, b}} (with respect to the filtration generated by X),
then ET = EX2

T = a2(b/(a + b)) + b2(a/(a + b)) = ab. Indeed, Qn = X2
n − n

is a martingale (example sheet). By Theorem 2.7, EQT
n = 0, so E(X2

T∧n) =
E(n ∧ T ) → ET as n → ∞ by monotone convergence theorem. On the other
hand, E(X2

T∧n) → E2
T by dominated convergence theorem, hence our claim.

When a = ∞, however, we would have XT = b a.s., so EXT = b ̸= 0 = X0

which would mean E(minn≤T Xn) = −∞ (otherwise we’ll be able to draw a
contradiction from the dominated convergence theorem).

2.5 Supermartingales

Definition 2.14. With respect to a filtration (Fn)n, a stochastic process (Xn)n
is a supermartingale (resp. submartingale) if it is an adapted integrable process
with E(Xn|Fn−1) ≤ Xn−1 (resp. E(Xn|Fn−1) ≥ Xn−1) a.s. for all n ≥ 1.

Theorem 2.12 (Optional Sampling Theorem for Supermartingales). Fix a fil-
tration (Fn)n. Suppose X is a supermartingale and S, T are two (a.s.) bounded
stopping times with S ≤ T a.s., then EXS ≥ EXT .

Proof. We have

Xn∧T −Xn∧S =

n∑
k=1

1S<k≤T (Xk −Xk−1)
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Note that {S < k}, {k ≤ T} ∈ Fk−1, so {S < k ≤ T} ∈ Fk−1, so

E(Xn∧T −Xn∧S) =

n∑
k=1

E(1S<k≤T (Xk −Xk−1))

=

n∑
k=1

E(E(1S<k≤T (Xk −Xk−1)|Fk−1))

=

n∑
k=1

E(1S<k≤TE(Xk −Xk−1|Fk−1)) ≤ 0

As S, T are bounded, this shows the theorem.

Definition 2.15. Let H,X be two processes. The martingale transform of H
with respect to X is the process

(H ·X)n =

n∑
k=1

Hk(Xk −Xk−1)

Definition 2.16. A process (Hn)n≥1 is called previsible (or predictable) with
respect to a filtration (Fn)n if Hn is Fn−1-measurable for all n ≥ 1.

Theorem 2.13. Fix a filtration (Fn)n. Let X be a martingale and H a
(termwise) bounded previsible process, then H ·X is a martingale.

Proof. H ·X is clearly integrable by the boundedness of H, and is adapted since
H is previsible and X is adapted. It remains to compute

E((H ·X)n − (H ·X)n−1|Fn−1) = E(Hn(Xn −Xn−1)|Fn−1)

= HnE(Xn −Xn−1|Fn−1) = 0

as X is a martingale.

Theorem 2.14. Fix a filtration (Fn)n. Let X be a supermartingale and H
a nonnegative, (termwise) bounded, previsible process, then H · X is a super-
martingale.

Proof. Similar.

How do these constructions relate to finance?
Let (Sn)n be the price process adapted to a filtration (Fn)n and r a riskfree
interest rate. Let θn be the portfolio held between time n − 1 and n and Xn

be the wealth of the agent at time n. The budget constraint is then Xn−1 =
θ0n + θ⊤n Sn−1 and we have Xn = θ0n(1 + r) + θ⊤n Sn. A simple calculation shows
that

Xn

(1 + r)n
= X0 +

n∑
k=1

θ⊤k

(
Sk

(1 + r)k
− Sk−1

(1 + r)k−1

)
So the discounted wealth is exactly the martinagle transform of portfolio with
respect to discounted prices.
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2.6 Controlled Markov Processes

Recall that a process (Xn)n is Markov iff E(f(Xn)|Fn−1) = E(f(Xn)|Xn−1) for
any bounded f , where (Fn)n is the filtration generated by Xn. The Markov
property means that we only need to know P (x,A) = P(X ∈ A|X = x) in order
to build a Markov process.
From a different point of view, one can view this process as a random dynamical
system: Let (ξn)n be an i.i.d. sequence taking values in some space V and a
function G : X × V → X . Then Xn = G(Xn−1, ξn) gives a Markov process.
It’s clear that these two viewpoints give the same class of objects, and they are
linked together by P(G(x, ξ1) ∈ A) = P (x,A).

Example 2.10. Let (ξn)n be a sequence of i.i.d. Unif[0, 1] random variables
and

G(x, v) =

{
x+ 1 if v ∈ [0, 1/2)

x− 1 if v ∈ [1/2, 1]

Tnen X0 = 0, Xn = G(Xn−1, ξn) is the symmetric random walk on Z.

The idea of a controlled Markov process evolves from the addition of an
accompanying previsible process (with respect to a given filtration). Given a
sequence of i.i.d. random variables, a previsible process (Un)n (taking values in
U) and functionG : X×U×V → X , the processXn = G(Xn−1, Un, ξn) is called a
controlled Markov process. Alternatively, these processes can be characterised
by the controlled transition probabilities P (x, u,A) = P(G(x, u, ξ1) ∈ A) =
P(X1 ∈ A : X0 = x, U1 = u).

Example 2.11. Consider a multi-period market model with one risk asset.
Suppose Sn = Sn−1ξn where ξn are i.i.d., then

Xn = (1+r)Xn−1+θ⊤n (Sn− (1+r)Sn−1) = (1+r)Xn−1+θ⊤n Sn−1(ξn− (1+r))

So (Xn) is a controlled Markov process with Un = θ⊤n Sn−1 and G(x, u, v) =
(1 + r)x+ u(v − (1 + r)).

Motivated by the example, we are interested in the optimisation of

E

(
N∑

k=1

f(k, Uk) + g(XN )

∣∣∣∣∣X0 = x

)

over controls (Uk)1≤k≤N .

Definition 2.17. The value function of the problem is defined as

V (n, x) = sup
(Uk)

E

(
N∑

k=n+1

f(k, Uk) + g(XN )

∣∣∣∣∣Xn = x

)

We know that V (N, x) = g(x) and we want the value of V (0, x). This is
screaming dynamical programming, so let’s do some of that. A hunch of this
flavour is Bellman’s equation

V (n− 1, x) = sup
u
(f(n, u) + EV (n,G(x, u, ξ)))

where Xn = G(Xn−1, Un, ξn).
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Theorem 2.15. Suppose f, g,G are given and V solves Bellman’s equation

V (n− 1, x) = sup
u
(f(n, u) + EV (n,G(x, u, ξ)))

subject to V (N, x) = g(x). Suppose u∗(n, x) is the optimal solution to the
maximisation of f(n, u) + EV (n,G(x, u, ξ)). Write U∗

n = u∗(n,X∗
n−1), X

∗
n =

G(X∗
n−1, U

∗
n, ξn) with X∗

0 = x given. Assuming everything is integrable, then
(U∗

n)1≤n≤N is the optimal control for the optimisation of

E

(
N∑

k=1

f(k, Uk) + g(XN )

∣∣∣∣∣X0 = x

)

In particular, the optimal control also has the Markov property.

Proof. Fix X0 = x. Let (Un)1≤n≤N be a previsible process and set Xn =
G(Xn−1, Un, ξn). Let Mn =

∑n
k=1 f(k, Uk) + V (n,Xn). We shall show that

(Mn)n is a supermartingale. It is clearly adapted and we have assumed integra-
bility. For the supermartingale property, E(Mn −Mn−1|Fn−1) = E(f(n, un) +
V (n,Xn) − V (n − 1, Xn−1)|Fn−1) = f(n,Un) + E(V (n,Xn)|Fn−1) − V (n −
1, Xn−1) ≤ 0 since V satisfies Bellman’s equation. So

E

(
N∑

k=1

f(k, Uk) + g(XN )

∣∣∣∣∣Fn

)
= E(Mn|Fn) ≤ Mn =

n∑
k=1

f(k, Uk) + V (n,Xn)

That is,

V (n,Xn) ≥ E

( ∑
k=n+1

f(k, Uk) + g(XN )

∣∣∣∣∣Xn

)
with equality iff U = U∗, so V is the value function and U∗ is optimal.

Consider Xn = Xn−1(1 + r) + θ⊤n (Sn − (1 + r)Sn−1) with d = 1 and Sn =
Sn−1ξn where (ξ)n are i.i.d. copies of some random variable ξ. Then Xn =
Xn−1(1 + r) + ηn(ξn − (1 + r)) where ηn = θnSn−1 is a controlled Markov
process.

Example 2.12. We want to maximise E(U(XN )|X0 = x). Bellman’s equation
becomes

V (n− 1, x) = sup
η

EV (n, (1 + r)x+ η(ξ − (1 + r)))

subject to V (N, x) = U(x). This is pretty much all we can do without further
assumptions, so let’s make some. Let U(x) = −e−γx be a CARA utility. Then
an educated guess would be V (n, x) = U(x(1 + r)N−n)An for some constant
An. This clearly holds for n = N with AN = 1. Suppose the formula holds for
some n, then

V (n− 1, x) = sup
η

E(AnU(((1 + r)x+ η(ξ − (1 + r)))(1 + r)N−n))

= U((1 + r)N−nx)An inf
t
Eet(ξ−(1+r))

So the induction holds if An = αN−n where α = inft Eet(ξ−(1+r)). Consequently,
θ∗n = t∗/(γ(1 + r)N−nSn−1) where t = t∗ is the minimiser of Eet(ξ−(1+r)).

21



What if we allow the investor to consume Cn (which gives a certain utility)
during the interval (n− 1, n]? The model then becomes

Xn = (1 + r)(Xn−1 − Cn) + θ⊤n (Sn − (1 + r)Sn−1)

= (1− r)(Xn−1 − Cn) + ηn(ξn − (1 + r))

where as usual we care about the case d = 1, Sn = ξnSn−1.

Example 2.13. We want to maximise

E

(
N∑

k=1

U(Ck) + U(XN )

∣∣∣∣∣X0 = x

)
with Bellman equation

V (n− 1, x) = sup
C,η

(U(C) + EV (n, (1 + r)(x− C) + η(ξ − (1 + r))))

subject to V (N, x) = U(x). Suppose U(x) = (1−R)−1x1−R is a CRRA utility
with R > 0, R ̸= 1. We guess the solution has a separated form V (n, x) =
U(x)An, AN = 1. After a disgusting amount of pointless algebra, we get

V (n− 1, x) = x1−R sup
s
(U(s) +AnU(1− s)α)

where α = (1− R) supt EU((1 + r) + t(ξ − (1 + r))). The maximiser of s is, of
course, s∗ = 1/(1 + (Anx)

1/R) and we eventually get

An =

(
1− α(N−n+1)/R

1− α1/R

)R

So

C∗
n =

X∗
n−1

1 + (Anx)1/R
, θ∗n =

η∗n
Sn−1

=
t∗(X∗

n−1 −X∗
n)

Sn−1

where t = t∗ is the maximiser of EU((1 + r) + t(ξ − (1 + r))).

2.7 Infinite Horizon Problems

Consider a controlled Markov process Xn = G(Xn−1, Un, ξn) where (ξn)n are
i.i.d. copies of ξ. The goal is to maximise

E

( ∞∑
k=1

βk−1f(Uk)

∣∣∣∣∣X0 = x

)
We can’t really do dynamical programming anymore (phew) since we no longer
have a boundary condition. But Bellman’s equation (noooooooooo) can still be
written down

V (x) = max
u

(f(u) + βEV (G(x, u, ξ)))

Theorem 2.16. Suppose f(x) ≥ 0 for all n and V (x) ≥ 0 solves the Bellman
equation. Let u∗(x) be the maximiser of f(u) + βEV (G(x, u, ξ)). Consider
the process U∗

n = u∗(X∗
n−1), X

∗
n = G(X∗

n−1, u
∗
n, ξn) with X∗

0 = x. Suppose
βnEV (X∗

n) → 0 as n → ∞, then (U∗
n)n≥1 is the optimal control and V the

value function of the optimisation problem.
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Proof. GIven any control (Un)n≥1, let (Xn)n be its controlled process. Set

Mn =

n∑
k=1

βk−1f(Uk) + βnV (Xn)

which, as one can verify, is a supermartingale and is a martingale when U = U∗.
So

E

(
n∑

k=1

βk−1f(uk)

)
= E(Mn − βnV (Xn)) ≤ V (x)− βnEV (Xn)

with equality if u = u∗. By monotone convergence theorem,

E
∞∑
k=1

βk−1f(uk) = lim
n→∞

E
n∑

k=1

βk−1f(uk)

As V (x) ≥ 0, we have

E
∞∑
k=1

βk−1f(uk) ≤ V (x)

with equality iff u = u∗ since βnE(V (X∗
n)) → 0 as n → ∞.

2.8 Optimal Stopping Problems

Let (Xn) be a Markov process (a priori not controlled). Fix constant “horizon”
N ≥ 0. We want to maximise Eg(XT ) over stopping times T ≤ N .
Suppose Xn = G(Xn−1, ξn) where (ξn)n are i.i.d. copies of some ξ. Let
Zn = Xn∧T where T is a stopping time T ≤ N , so Zn = Zn−11T≤n−1 +
G(Zn−1, ξn)1T≥n. So this turns into an optimal control problem with control
Un = 1T≤n−1. Our goal is then to maximise Eg(ZN ).
Bellman’s equation becomes

V (n− 1, x) = max{g(x),EV (n,G(n, ξ))}

subject to V (N, x) = g(x).

Theorem 2.17. Suppose V solves the Bellman’s equation as stated above. Let
T ∗ = min{n ≥ 0 : V (n,Xn) = g(Xn)}, then T ∗ is optimal.

Proof. Pretty much identical as before. The process Mn = V (n,Xn) is always a
supermartingale. V (n, x) ≥ g(x) for all n, x, so for any stopping time T ≤ N we
have Eg(XT ) ≤ E(MT ) ≤ M0 = V (0, X0) by Theorem 2.12. Now T ∗ is clearly
a stopping time and (Mn∧T∗)n is a martingale. So Eg(XT∗) = EMT∗ = M0 =
V (0, X0) by Theorem 2.7 and done.

2.9 Arbitrage in Multi-Period Models

Recall our usual setting: We have d assets with an adapted process (Sn)n≥0,
risk-free interest rate r0 and a self-financing constraint Xn = Xn−1(1 + r) +
θ⊤r (Sn − (1 + r)Sn−1) and (θn)n is a previsible process valued in R.
Fix a finite horizon N .
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Definition 2.18. (θn)1≤n≤N is an arbitrage if

P

(
N∑

k=1

θ⊤k

(
Sk

(1 + r)k
− Sk−1

(1 + r)k−1

)
≥ 0

)
= 1

and

P

(
N∑

k=1

θ⊤k

(
Sk

(1 + r)k
− Sk−1

(1 + r)k−1

)
> 0

)
> 0

Definition 2.19. A risk-neutral measure (or an equivalent martingale measure)
is an equivalent measure Q under which the discounted prices (Sn/(1 + r)n)n
are martingales.

That is, EQ(Sn|Fn−1) = (1 + r)Sn−1 for all n ≥ 1.

Theorem 2.18 ((Multi-Period) Fundamental Theorem of Asset Pricing). In a
finite-horizon market model, the existence of a risk-neutral measure is equivalent
to the nonexistence of an arbitrage.

Proof. Suppose θ = (θn)n is a previsible process with XN ≥ 0 P-a.s.. If θ is
bounded and there exists a risk-neutral measure Q, then XN ≥ 0 Q-a.s. since
P,Q are equivalent. Also, (Xn/(1 + r)n)1≤n≤N is a Q-martingale since it is the
martingale transform of θ with respect to the martingale (Sn/(1+r)n)n. Hence
EQ(XN/(1+ r)N ) = X0 = 0, so XN = 0 Q-a.s., which then means that XN = 0
P-a.s., so θ cannot be an arbitrage.
If θ is not necessarily bounded, we can use a stopping time trick to get the same
result, which is sadly omitted here.
The other direction is similar as in the proof of Theorem 1.16.

2.10 European Contingency Claims in Binomial Model

Take d = 1 and Sn = Sn−1ξn where (ξn)n are i.i.d. copies of some ξ where
P(ξ = 1 + b) = p = 1− P(ξ = 1 + a) where b > a and p ∈ (0, 1). This is called
the Cox-Ross-Rubinstein binomial model.

Proposition 2.19. There is no arbitrage iff b > r > a.

Proof. For the “only if” direction, suppose r ≤ a, then θ1 = 1 is a one-period
arbitrage. Similarly, if r ≥ b, then θ1 = −1 would be an arbitrage.
Conversely, we will construct a risk-neutral measure when b > r > a. Indeed,
this is given uniquely by

Q(ξ = 1 + b) = q =
r − a

b− a
= 1−Q(ξ = 1− a)

It’s an easy exercise to check this works and is indeed unique.

Definition 2.20. A European contingency claim with expiry date N is an
FN -measurable payout Y payable at time N .

Definition 2.21. We call a European contingency claim Y vanilla if Y = g(SN )
for some function g.

Suppose we have a payout Y = g(SN ) in the binomial model.
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Theorem 2.20. The unique time-n no-arbitrage price of Y is

πn =
1

(1 + r)N−n
EQ(g(SN )|Fn)

Proof. πn/(1+ r)n is a Q-martingale and the risk-neutral measure Q is unique.

Theorem 2.21. Let

V (a, s) =
1

(1 + r)N−n
EQ(g(SN )|Sn = s)

θn =
V (n, Sn−1(1 + b))− V (n, Sn−1(1 + a))

Sn−1(b− a)

Let X0 = V (0, S0) and Xn = Xn−1(1 + r) + θn(Sn − (1 + r)Sn−1), then XN =
g(SN ).

(θn)n are called the replicating strategies.

Remark. Note that V (n, Sn) = πn by the Markov property of (Sn)n under Q.
From the general theory of Markov chains, V satisfy the recurrence (1+r)V (n−
1, s) = qV (n, s(1 + b)) + (1− q)V (n, s(1 + a)) subject to V (N, s) = g(s).

Proof. Suppose Xn−1 = V (n− 1, Sn−1), then

Xn = (1 + r)V (n− 1, Sn−1) + θn(Sn − (1 + r)Sn−1)

= qV (n, ξn−1(1 + b)) + (1− q)V (n, ξn−1(1 + a))

+
V (n, ξn−1(1 + b))− V (n, ξn−1(1 + a))

b− a
(ξn − (1 + r))

= V (n, ξn−1(1 + a))
(1 + b)− ξn

b− a
+ V (n, ξn−1(1 + b))

ξn − (1 + a)

b− a

= V (n, Sn)

So by induction Xn = V (n, Sn) for all n, in particular for n = N .

Let’s take the concrete example where Y is a call option.

Definition 2.22. A (European) call option is the right, but not the obligation,
to buy a given asset at a fixed price (strike)K at a fixed timeN (expiry/maturity
date).

More precisely, we are just looking for Y = g(SN ) where g(s) = (s−K)+.

Theorem 2.22. Let g(s) = (s −K)+ and θn be its replicating strategy. Then
θn ∈ [0, 1] and

θn+1 − θn
Sn − (1 + r)Sn−1

≥ 0

Proof. Let

V (n, s) =
1

(1 + r)N−n
((Sn −K)+|Sn = s)
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Note that SN = SnZ where Z = ξn+1 · · · ξN . So

V (n, s) =
1

(1 + r)N−n
EQ((sZ −K)+)

Since s 7→ (sZ − K)+ is increasing and convex, so is s 7→ V (n, s), so θn ≥ 0.
On the other hand

V (n, s) =
1

(1 + r)N−n
EQ(SN −K + (K − SN )+|Sn = s)

= s− K

(1 + r)N−n
+

1

(1 + r)N−n
EQ((K − Zs)+)

As Sn/(1 + r)n is a Q-martingale, s 7→ V (n, s) − s is decreasing, so θn ≤ 1.
The last inequality follows from (some calculations) and the convexity of s 7→
V (n, s).

How about put options?

Definition 2.23. A (European) put option is the right, but not the obligation,
to sell a given asset at a fixed price (strike) at a fixed time N (expiry/maturity
date).

That is, Y = g(SN ) where g(s) = (K − s)+.

Proposition 2.23. A European put option of strike K can be replicated by hold-
ing 1 European call option of the same strike and expiry date (or the replication
of such a call option), shorting one stock, and putting K/(1 + r)N−n+1 in the
bank during time (n − 1, n]. Consequently,the no-arbitrage price Pn of the put
option equals K/(1+ r)N−n−Sn+Cn (the “put-call parity formula”) where Cn

is the no-arbitrage price of the corresponding call option.

Proof. (K − s)+ = K − s+ (s−K)+.

2.11 American Contingency Claims

Fix a horizon (expiry date) N .

Definition 2.24. An American contingency claim is an adapted process (Yn)n
where Yn is the payout of the claim if it is exercised at time n.

Definition 2.25. An American call option with strike K is given by Yn =
(Sn−K)+ and an American put option with strikeK is given by Yn = (K−Sn)+.

The time-n price πn of an American claim (Yn)n is given by

πn = max
T stopping time in [n,N ]

EQ
(

1

(1 + r)T
YT

∣∣∣∣Fn

)
in a complete market with risk-neutral measure Q. Of course,

πn−1 = max

{
Yn−1,

1

1 + r
EQ(πn|Fn−1)

}
and an optimal stopping time is given by T ∗ = min{n ∈ [0, N ] : πn = Yn}.
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Proposition 2.24. Suppose (Yn/(1 + r)n)n is a submartingale under Q, then
it is optimal to let the contingency claim expire.

Proof. We claim that πn = E(YN/(1+r)N−n|Fn). Indeed, this is true for n = N
as πN = YN . Suppose it is true for n, then

πn−1 = max

{
Yn−1,

1

1 + r
EQ(πn|Fn−1)

}
= max

{
Yn−1,

1

(1 + r)N−n+1
EQ(YN |Fn−1)

}
= EQ

(
YN

(1 + r)N−n+1

∣∣∣∣Fn−1

)
by the submartingale property.

Example 2.14. (Sn − K)+/(1 + r)n is a submartingale, so NEVER exercise
an American call early!

3 Continuous-Time Models

There really is no need to motivate why we want continuous-time model – we
all are longing for it for a while now.

3.1 Brownian Motion

Consider the binomial model Sn = S0ξ1 · · · ξn with (ξi)i i.i.d.. For δ > 0 small,
we set t = nδ and log Ŝt = logS0 + µt + σWt where µ = δ−1E(log ξ), σ2 =
δ−1 Var(log ξ), and of course

Wt =
log(Ŝt/S0)− µt

σ

Wt −Ws (for t > s) should be independent of (Wu)0≤u≤s, so the central limit
theorem should give some results of the form (Wt −Ws)/

√
t− s ≈ N (0, 1).

Definition 3.1. A (standard) Brownian motion is a process (Wt)t≥0 (i.e. a
collection of random variables indexed by R≥0) such that W0 = 0, Wt −Ws is
independent of (Wu)0≤u≤s, Wt −Ws ∼ N (0, t − s), and (Wt)t≥0 is continuous
(in the sense that t 7→ Wt is a.s. continuous).

Theorem 3.1 (Wiener 1923). Brownian motion exists.

Proof. Omitted.

Definition 3.2. A process (Xt)t≥0 is Gaussian if (Xt1 , . . . , Xtn) is Gaussian
for every 0 ≤ t1 < . . . < tn.

Theorem 3.2. A continuous process (Wt)t≥0 is a Brownian motion iff it is a
Gaussian process with EWt = 0,E(WsWt) = min{s, t} for any s, t ≥ 0.
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Proof. Suppose (Wt) is a Brownian motion, then it is clearly Gaussian since
Wt2 − Wt1 , . . . ,Wtn − Wtn−1

are independent normals for 0 ≤ t1 < . . . <
tn. EWt = 0 as Wt ∼ N (0, t) and (suppose s < t) E(WsWt) = E(W 2

s ) +
E(Ws)E(Wt −Ws) = s.
Conversely, suppose (Wt) is Gaussian and EWt = 0,E(WsWt) = min{s, t} for
any s, t ≥ 0. Then whenever t > s, Wt−Ws is normal with mean E(Wt−Ws) = 0
and variance Var((Wt − Ws)

2) = t − 2s + s = t − s. So indeed Wt − Ws ∼
N (0, t − s). Now any u < s < t would have E((Wt −Ws)Wu) = u − u = 0, so
Wt −Ws is uncorrelated with (Wu)0≤u<s, which means that they are indepen-
dent as they are Gaussians.

Theorem 3.3. If (Wt)t≥0 is a Brownian motion, so are:

(i) W̃t = cWt/c2 for c ∈ R.
(ii) W̃t = Wt+T −WT for T ≥ 0.
(iii) W̃t = tW1/t, W̃0 = 0.

Proof. Check all of them are Gaussian with the correct mean and covariance.
The only technicality is to check that Wt/t → 0 a.s. as t → ∞ in (iii), which
requires a form of strong law of large numbers.

Theorem 3.4. Any Brownian motion is a (continuous-time) Markov process.

Proof. Let (Wt)t≥0 be a Brownian motion and Fs = σ(Wu : u ≤ s).

E(g(Wt)|Fs) = E(g(Wt −Ws +Ws)|Fs) =

∫
R
g(z +Ws)

e−z2/2(t−s)√
2π(t− s)

dz

= E(g(Wt)|Ws)

which is the Markov property.

Definition 3.3. A collection of σ-algebras (Ft)t indexed by R≥0 is a filtration
if Fs ⊂ Ft whenever s < t. The filtration generated by a process (Xt)t≥0 is
Ft = σ(Xs : s ≤ t).

Definition 3.4. A continuous process (Xt)t≥0 is a martingale with respect to
the filtration (Ft)t≥0 if E(Xt|Fs) = Xs for all 0 ≤ s ≤ t.

Theorem 3.5. Any Brownian motion is a martingale with respect to the filtra-
tion generated by itself.

Proof. E(Wt|Fs) = E(Wt −Ws +Ws|Fs) = E(Wt −Ws) +Ws = Ws whenever
0 ≤ s ≤ t.

Theorem 3.6. A continuous process (Wt)t≥0 with W0 = 0 is a Brownian mo-

tion iff (eθWt−θ2t/2)t≥0 is a martingale for all θ ∈ R.

Proof. The “only if” part is clear. Conversely, suppose (eθWt−θ2t/2)t≥0 is a

martingale, then E(eθ(Wt−Ws)|Fs) = eθ
2(t−s)/2, so Wt −Ws ∼ N (0, t − s) and

is independent of Fs.

Theorem 3.7 (Lévy). A continuous process (Wt)t≥0 with W0 = 0 is a Brown-
ian motion iff (Wt)t≥0 and (W 2

t − t)t≥0 are martingales.
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Proof. Omitted.

Theorem 3.8. Let Ta = inf{t ≥ 0 : Wt = a}, then Ta < ∞ a.s. for any
a ∈ R \ {0}.

Proof. We’ll deal with the situation where a > 0. The other case is similar.
We want to show that supt≥0 Wt > a a.s. for all a > 0. Indeed, for any c > 0,

P
(
sup
t≥0

Wt > a

)
= P

(
sup
t≥0

W̃tc2 > ca

)
= P

(
sup
t≥0

Wt > ca

)
where W̃t = cWt/c2 . Sending c ↓ 0 shows that Z = supt≥0 Wt ∈ {0,∞}.
Ẑ = supt≥1(Wt −W1) has the same law as Z. We have p = P(Z = 0) = P(Z =

0, Ẑ = 0) ≤ P(W1 ≤ 0, Ẑ = 0) = p/2, so p = 0.

3.2 Reflection Principle

Theorem 3.9. Let T be a finite stopping time and W a Brownian motion.
Then the process W̃t = Wt+T −WT is also a Brownian motion.

Proof. Omitted but based on strong Markov property.

Theorem 3.10 (Reflection Principle). Let W be a Brownian motion and set
Ta = inf{t ≥ 0 : Wt = a}. Then W̃t = Wt1t≤Ta

+(2a−Wt)1t≥Ta
is a Brownian

motion.

Proof. W̃t+Ta
= WTa

+ (WTa
−Wt+Ta

). But WTa
−Wt+Ta

has the same law as
Wt+Ta

−WTa
, so we are essentially done.

Lemma 3.11. Let Mt = max0≤s≤t Ws, then E(g(Wt)1Wt≤a,Mt≥a) = E(g(2a−
Wt)1Wt≥a).

Proof. Let W̃t = Wt1t≤Ta
+ (2a − Wt)1t≥Ta

and M̃t = max0≤s≤t W̃s, then

{Mt ≥ a} = {M̃t ≥ a}. Since Wt = 2a− W̃ )t when t ≥ Ta, we have

E(g(Wt)1Wt≤a,Mt≥a) = E(g(Wt)1Wt≤a,M̃t≥a) = E(g(2a− W̃t)1W̃t≥a,M̃t≥a)

= E(g(2a− W̃t)1W̃t≥a) = E(g(2a−Wt)1Wt≥a)

by the preceding theorem.

Corollary 3.12. Whenever a ≥ b and a ≥ 0, P(Wt ≤ b,Mt ≥ a) = P(Wt ≥
2a− b).

Proof. Take g(w) = 1w≤b.

Theorem 3.13. For a ≥ b, a ≥ 0,

fMt,Wt
(a, b) = −f ′

Wt
(2a− b) =

2(2a− b)

t3/2
√
2π

e−(2a−b)2/(2t)

Proof. We have

P(Mt ≥ a) = P(Mt ≥ a,Wt ≥ a) + P(Mt ≥ a,Wt ≤ a)

= P(Wt ≥ a) + P(Wt ≥ a) = 2Φ(−a/
√
t)

which means that Mt has the same law as |Wt| for all fixed t. We also have

P(Mt ≥ a) = P(Ta ≤ t), so this gives fTa
(t) = a

t3/2
√
2π

e−a2/(2t).
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3.3 Cameron-Martin Theorem

Recall from example sheet that if Z ∼ N (0, 1) and a ∈ R, then

E(eaZ−a2/2f(Z)) = Ef(Z + a)

This of course has a multidimensional analogue given by

E(ea
⊤Z−∥a∥2/2f(Z)) = Ef(Z + a)

whenever Z ∼ Nn(0, I), a ∈ Rn.

Theorem 3.14 (Cameron-Martin). Let g : C([0, t]) → R be a sufficiently nice
functional (measurable, integrable, etc.). Suppose W is a Brownian motion and
c ∈ R, then

Eg((Ws + cs)0≤s≤t) = E(ecWt−c2t/2g((Ws)0≤s≤t))

Proof. It suffices to consider the case where g(w) = G(w(t1), . . . , w(tn)) by a
monotone class argument. We can further modify this to the form

g(w) = H

(
W (t1)√

t1
,
W (t2)−W (t1)√

t2 − t1
, . . . ,

W (tn)−W (tn−1)√
tn − tn−1

)
Then if we write Zk = (W (tk)−W (tk−1))/

√
tk − tk−1 (which are by definition

i.i.d. N (0, 1) random variables),

Eg((Ws + cs)0≤s≤t) = EH(Z1 + c
√
t1, . . . , Zn + c

√
tn − tn−1)

= E(e
∑

i c
√
ti−ti−1Zi−

∑
i c

2(ti−ti−1)/2H(Z1, . . . , Zn))

= E(ecWt−c2t/2g((Ws)0≤s≤t))

as desired.

Corollary 3.15.

P
(
max
0≤s≤t

(Ws + cs) ≤ a

)
= E

(
ecWt−c2t/21max0≤s≤t Ws≤a

)
Corollary 3.16. Let (Wt)t≥0 be a Brownian motion under a probability measure
P. Fix c > 0 and horizon T > 0. Set

dQ
dP

= ecWT−c2T/2

Then W̃t = Wt − ct is a Q-Brownian motion.

Proof.

EQ(g((W̃t)0≤t≤T )) = EP(ecWT−c2T/2g((Wt − ct)0≤t≤T )) = EP(g(Wt)0≤t≤T )

Consequently the law of W̃ under Q is exactly the same as the law of W under
P , which is a Brownian motion.
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3.4 Black-Scholes Model

In the binomial model, we had Sn = S0ξ1 · · · ξn for i.i.d. ξk ∼ ξ. We moti-
vated continuous-time models by considering log Ŝt = logS0 + µt+ σW t where
t = nδ, µ = δ−1E log ξ, σ2 = δ−1 Var(log ξ). We (heuristically) argued that
(Wt)t≥0 ≈ N (0, t− s) as δ → 0.
This inspires us to take a Brownian motion (Wt)t≥0 and study the continous
process St = S0e

µt+σWt . This is the premise of the Black-Scholes model. µ is
known as the drift and σ the volatility.
We haven’t really talked about how interest rates should be modelled in con-
tinuous time. As a motivation, one might want to do this by writing down
(1+r)n = (1+ r̂δ)t/δ ≈ er̂t where r̂ = r/δ. To put into practice, we let the bank
account at time t be worth ert where r is a continuous-time compound interest
rate.

Proposition 3.17. There is a risk-neutral measure in the Black-Scholes model.

That is, there is a probability measure under which (e−rtSt)0≤t≤T is a Q-
martingale.

Proof. Let c = (r − µ)/σ − σ/2 and W̃t = Wt − ct. Then Q as defined by

dQ
dP

= ecWT−c2T/2

is risk-neutral since Ste
−rt = S0e

−σ2t/2+σW̃t is a martingale as W̃t is a Q-
Brownian motion.

Definition 3.5. Let Y be the payout of a European contingent claim with
maturity horizon T . The Black-Scholes price πt at time t is defined by

πt = e−r(T−t)EQ(Y |Ft)

where dQ/dP = ecWT−c2T/2, c = (r − µ)/σ − σ/2.

It follows that (e−rtπt)0≤t≤T is a Q-martingale.
Suppose Y = g(ST ) is a vanilla claim, then

πt = e−r(T−t)EQ(g(Ste
(r−σ2/2)(T−t)+σ(W̃T−W̃t))|Ft)

Write this expression as V (t, St) which has an explicit formula

V (t, s) =

∫ ∞

−∞
g(se(r−σ2/2)(T−t)+σ

√
T−tz)

e−z2/2

√
2π

dz

When Y is a European call, i.e. g(s) = (s−K)+, plugging this into the above
formula gives V (t, s) = sΦ(d1) − e−r(T−t)KΦ(d2) (the Black-Scholes formula)
where

d1 =
− log(K/s)

σ
√
T − t

+
( r
σ
+

σ

2

)√
T − t, d2 =

− log(K/s)

σ
√
T − t

+
( r
σ
− σ

2

)√
T − t

How did Black and Scholes get their price formula for πt in the first place? Like
above we set V (t, s) be the Black-Scholes price of a vanilla claim when St = s.
Then V solves

∂V

∂t
+ rs

∂V

∂s
+

1

2
σ2s2

∂2V

∂s2
= rV
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subject to V (T, s) = g(s). This is known as the Black-Scholes PDE. We will
justify the formula for the Black-Scholes price by deriving this PDE from the
binomial model.

3.5 The Binomial Heuristics for Black-Scholes PDE

As usual, we set E log ξ = µδ,Var(log ξ). So the binomial parameters are a =
−σ

√
δ + µδ + O(δ2), b = σ

√
δ + µδ + O(δ2), rbin = δr and therefore q = (rδ −

a)/(b−a). We then have (1+rδ)V (t−δ, s) = qV (t, s(1+b))+(1−q)V (t, s(1+a))
which gives

V + (rV − ∂V

∂t
)δ = q

(
V +

∂V

∂s
sb+

1

2

∂2V

∂s2
(sb)2

)
+ (1− q)

(
V +

∂V

∂s
sa+

1

2

∂2V

∂s2
(sa)2

)
= V +

∂V

∂s
s(qb+ (1− q)a) +

1

2

∂2V

∂s2
s2(qb2 + (1− q)a2)

= V +
∂V

∂s
srδ +

1

2

∂2V

∂s2
s2σ2δ

up to o(δ). Taking δ → 0 gives the Black-Scholes PDE.
∂V/∂S is called the Black-Scholes Delta (of a vanilla European claim), which is
approximately the binomial replicating portfolio.

Definition 3.6. Delta-hedging is the strategy of holding the Black-Scholes
Delta amount of the underlying stock.

Example 3.1. The Black-Scholes Delta of a European call is Φ(d1) where, as
usual,

d1 =
− log(K/s)

σ
√
T − t

+
( r
σ
+

σ

2

)√
T − t

∂2V/∂s2 is called the Black-Scholes Gamma, which indicates the amount of
share one should buy if the underlying price moves.

Definition 3.7. If g is increasing, then the Black-Scholes Delta is nonnegative;
If g is convex, then the Black-Scholes Gamma is nonnegative.

Proof. Recall that

V (t, s) = e−r(T−t)Eg(se(r−σ2/2)(T−t)+σ
√
T−tZ)

for Z ∼ N (0, 1).

Delta and Gamma are examples of Black-Scholes Greeks, which are the
partial derivatives of V . They are usually, but not always, denoted by Greek
letters. When they are not, they are usually named after television celebrities.

3.6 The Heat Equation Heuristics

Proposition 3.18. Fix suitable f and let u(τ, x) = Ef(x +
√
τZ), then uτ =

uxx/2.
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Proof. Move the derivative inside.

Suppose V is the value function given by the Black-Scholes formula. Let

u(t, x) = erτ/σ
2

V
(
T − τ

σ2
, ex−(r/σ2−1/2)τ

)
= Eg(ex+

√
τZ)

Then u solves the heat equation. Reverse engineering this process gives the very
same Black-Scholes PDE.

3.7 Exotic Claims

Example 3.2 (Forward Strike Call Option). We now set the strike price to
be ST0

for maturity T1 > T0, i.e. the payout is (ST1
− ST0

)+. Our previous
discussion solves to the Black-Scholes price for t ≥ T0, when it essentially reduces
to a call with known strike K = ST0

. Before T0, the Black-Scholes price should
be

πt = e−r(T1−t)EQ((ST1
− ST0

)+|Ft)

= e−r(T1−t)EQ

(
ST0

(
ST1

ST0

− 1

)
+

∣∣∣∣∣Ft

)

= e−r(T1−t)EQ(ST0
|Ft)EQ

(
ST1

ST0

− 1

)
+

= e−r(T1−t)er(T0−t)StEQ
(
ST1

ST0

− 1

)
+

Consider a European claim with payout Y . Then “up-and-in” version of
the claim is a claim whose payout has the form Y 1max0≤t≤T St≥B where T
is the maturity date and B is a fixed barrier. The “up-and-out” version is
Y 1max0≤t≤T St<B , “down-and-in” is Y 1min0≤t≤T St<B , and “down-and-out” is
Y 1min0≤t≤T St≥B .
So for example an “up-and-in” European call is the right, but not the obligation,
to buy the stock for price K at time T , assuming that the stock price exceeds
B at some earlier time.

Proposition 3.19. In the Black-Scholes model, the initial price of an up-and-
out vanilla claim has payout g(ST )1max0≤t≤T St<B is the same as the initial price
of the vanilla claim with payout

g(ST )1ST<B −
(
B

S0

)2r/σ2−1

g

(
B2ST

S2
0

)
1ST<S2

0/B

Proof. The Black-Scholes price of a European claim Y is e−rtEQ(Y ), so it
suffices to show that the two random variable has the same Q-expectation.
Note that {maxt St < B} ⊂ {ST < B}, so g(ST )1maxt St<B = g(ST )1ST<B −
g(ST )1ST<B,maxt St≥B . Writing E = EQ, b = log(B/S0)/σ and St = S0e

σ(Wt+ct)
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where c = r/σ − σ/2, W is a Q-Brownian motion, then

E(g(ST )1ST<B,maxt St≥B) = E(g(S0e
σ(WT+cT ))1WT+cT<B,maxt(Wt+ct)≥B)

= E(ecWT−c2T/2g(S0e
σWT )1WT<b,maxt Wt≥b)

= E(ec(2b−WT )−c2T/2g(S0e
σ(2b−WT ))1WT>b)

= e2bcE(ecWT−c2T/2g(e2bσS0e
σWT )1WT<−b)

= e2bcE(g(e2bσS0e
σ(WT+cT ))1WT+cT≤−b)

by Theorem 3.14. Translating this to the original notations gives the result.

3.8 Numerical Schemes

We are interested in the Black-Scholes PDE which can be modified into the heat
equation after changing variables. It certainly would be useful if we can find a
good numerical scheme to solve it.
To be precise, the problem we’re trying to solve is ut = uxx/2 where u(0, x) =
h(x) for x ∈ [0, 2π], u(t, 0) = a(t), u(t, 2π) = b(t).
We will use the grid method. Fix step sizes ∆t and ∆x = 2π/N where N
is an integer. We want to approximate u(n∆t, k∆x) by Un,k where U0,k =
h(k∆x), Un,0 = a(n∆t), Un,N = b(n∆t). To obtain a sensible recursive scheme
for U , we certainly want a way to discretise derivatives.
There are three most popular ways of doing it, namely

Un+1,k − Un,k

∆t
=

Un,k+1 − 2Un,k + Un,k−1

2(∆x)2

Un+1,k − Un,k

∆t
=

Un+1,k+1 − 2Un+1,k + Un+1,k−1

2(∆x)2

Un+1,k − Un,k

∆t
=

Un,k+1 − 2Un,k + Un,k−1

4(∆x)2
+

Un+1,k+1 − 2Un+1,k + Un+1,k−1

4(∆x)2

Where the first is known as the forward-in-time method, the second is the
backwards-in-time method, and the third, which is the average of the two, is
known as the Crank-Nicolson method. The forward-in-time method is very
natural, but it has numerical disadvantage.

Definition 3.8. A numerical scheme for the heat equation is stable (in the von
Neumann sense) if supβ |r(β)| ≤ 1 where r(β) is the unique real number such

that Un,k = r(β)neiβk is a solution to the recursion defining the scheme.

For the forward-in-time method r(β) = 1 − ν(1 − cos(β∆x)) where ν =
∆t/(∆x)2, which means that it is not stable unless ν ≤ 1. The backward-
in-time method however is unconditionally stable as it has r(β) = (1 + ν(1 −
cos(β∆x)))−1. The Crank-Nicolson method is also always stable with r(β) =
(2− 2(1− cos(β∆t)))/(2 + 2(1− cos(β∆x))).
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