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1 Newtonian Dynamics: The Basics

1.1 Particles

Definition 1.1. A particle is an object that has negligible size but have positive
mass m and electric charge q.

Since a particle will have small size, we can describe its position by a simple
position vector r(t) ∈ R3 relative to the origin. We often write the vector in
terms of its Cartesian components r = xi+ yj + zk = (x, y, z) where i, j, k are
an orthonormal basis. The choice of the coordinate system (the origin and the
basis) defines a frame of reference.
When the particle moves, its position is determined by a curve r(t). The velocity
of the particle is naturally its derivative u(t) = ṙ(t). Geometrically, the velocity
will be the tangent to the curve (or trajectory) at time t. The momentum as
we know would be p = mu = mṙ. The acceleration is defined as a = u̇ = r̈.

Note. The time derivative of a vector valued function v(t) is

v̇(t) = lim
h→0

v(t+ h)− v(t)

h

provided its existence. If anyone is worried, v → v0 ⇐⇒ ∥v − v0∥ → 0.
In particular, if v = xi+ yj + zk, then v̇ = ẋi+ ẏj + żk (given that the frame
of reference is invariance in time).
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Proposition 1.1. For scalar functions f(t) and vector functions g(t), h(t), we
have
1. (fg)′ = f ′g + fg′.

2. (g · h)′ = g′ · h+ g · h′.

3. (g × h)′ = g′ × h+ g × h′.
Note that sometimes the order matters.

1.2 Newton’s Laws of Motion

Law (Newton’s First Law). There exists inertial frames of reference (or inertial
frames). That is, a particle at rest or move in constant velocity continues to do
so given that it is acted by no force.

Law (Newton’s Second Law). In an inertial frame, then the motion obeys the
rule ṗ = F .

Law (Newton’s Third Law). To every action there is an equal and opposite
reaction.

The statements, albeit are made for particles, can be extended to finite
bodies. 1

1.3 Inertial Frames and Galileo Transformation

If we have an inertial frame, r̈ = 0 if there is no force acting on it. There is
obviously not only one inertial frame. In particular, if S is an inertial frame,
then a frame S′ moving with uniform velocity relative to S is also an inertial
frame. For example, if the frame S′ is moving with velocity v on the x direction,
then 

x′ = x− vt

y′ = y

z′ = z

t′ = t

More generally, if S′ is moving with vector velocity v relative to S, we have{
r′ = r − vt

t′ = t

This transformation is called a boost. For a partical having position vector r(t)
in S and r′(t′) in S′. So we have the velocity u′ = u− v (note that the primes
are NOT used for derivatives here) and a′ = a.

Definition 1.2. A general Galileo transformation is one which preserves inertial
frames. It combines a boost with any of the following:
1. Translation of space: r′ = r − r0.
2. Translation of time: t′ = t− t0.
3. Rotations and reflections: r′ = Rr,R ∈ O(3).
This set generates the Galilean group of transformations.

1Bounded bodies.
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Note that if the acceleration is zero in one frame, so it is in another.

Definition 1.3 (Principle of Galilean Relativity). The laws of (Newtonian)
physics is unchanged in all inertial frames.

That is, the laws of physics look the same in every inertial frame. Hence the
system of Newtonian physics has to be invariant under the Galilean transfor-
mations.

1.4 Newton’s Second Law

The law postulates that F = ṗ. Assume that m is constant in time, then we
have F = mr̈. Easily m is the measure of “reluctance to accelerate”, that is
inertia. If we specify F as a function of r, ṙ, t, then we have a second order ODE
in r:

F (r, ṙ, t) = mr̈

We then need two initial conditions to solve the equation (or to determine the
motion). For example, we can specify the initial position and velocity. With
these information 2 we can get an unique solution for the trajectory of our
particle.

1.5 Examples of Forces

Consider 2 particles indexed by 1, 2, then Newton tells us

Law (Newton’s Law of Gravitation). There is an action-reaction pair on the
two particles, namely

F1 = − Gm1m2

|r1 − r2|3
(r1 − r2) = −F2

In particular, |F1| = |F2| ∝ |r1 − r2|−2. This is known as the inverse square
law. It is quite obvious that G has an unit. It is called Newton’s Gravitation
Constant.
Another example is electromagnetic forces. Let there be a particle with electric
charge q and imagine that it is moving in an electric-magnetic field E(r, t) and
B(r, t).

Law (Lorentz Force Law). We have

F = q(E + ṙ ×B)

Example 1.1. Take E = 0, B = B(t), i.e. the electric field is constant and the
magnetic field is constant in space. Hence

mr̈ = qṙ ×B(t)

Choose axes such that B = Bẑ, then mz̈ = 0 =⇒ z = z0+ut. As for the other
directions, we have {

mẍ = qBẏ

mÿ = −qBẋ

2And perhaps Picard-Lindelöf Theorem
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which we can easily solve to get{
x = x0 − α cos(ω(t− t0))

y = y0 + α sin(ω(t− t0))

which shall produce a helical path which is clockwise when viewed from the
direction of B. And the axis of the helix is parallel to the magnetic field.

2 Dimensional Analysis

2.1 Basic Dimensional Quantities and Units

For most motions we will be considering, there are basically three dimensions
of interests: length (L), mass (M) and time (T ). In general, the dimension of
a physical quantity X can be expressed using thsese three dimensions. For ex-
ample, the density can be expressed by ML−3, and the force can be expressed
by MLT−2. We are only going to consider the product of powers of the di-
mensional quantities. We can then introduce units for the basic dimensional
quantities. Most likely we will use the SI unit system (L =m, M =kg, T =s).
For other quantities, we can form units out of the basic units we defined for the
basic quantities.

Example 2.1. To find the unit of the constant G in Newton’s Law of Gravita-
tion, we can determine by writing each quantity in basic quantities, so we have
G = L3T−2M−1, therefore the unit for G will be m3s−2kg−1.

The general principle is that dynamical or physical equations must work for
any chosen system of units.

2.2 Scaling

Suppose I have a dimensional quantity Y which depends on some other quan-
tities X1, X2, . . . , Xn. Let the diensions of the quantity Y be LaM bT c, and Xi

has dimensions LaiM biT ci . We want to determine the dimensions of Y from
that of Xi. So obviously we have Y = C

∏
i X

pi

i , so
a =

∑
i piai

b =
∑

i pibi

c =
∑

i pici

If n = 3, then there is an unique solution iff X1, X2, X3 are independent, so∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ ̸= 0

which happens most of the time. Note that for general n there must be a
solution (not necessarily unique) if we assume that Y does indeed depend on a
subset of {Xi}. So for n < 3, there is an unique solution as well.
For n > 3, however, we can choose n− 3 dimensionless constants

λi = Xi/(X
pi1

1 Xpi2

2 Xpi3

3 )
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where i = 4, 5, . . ., assuming X1, X2, X3 are independent. So

Y = C(λ4.λ5, . . .)X
p1

1 Xp2

2 Xp3

3

where C is a dimensionless function. This is sometimes known as Bridgemzn’s
Theorem.

Example 2.2. Consider a simple pendulum. Let d be the horizontal initial
displacement, m the mass, and g the acceleration due to gravity, and l the
length of the string, and we want to find expression of the period P in term of
these. Speaking of dimensions, 

[P ] = T

[d, l] = L

[g] = LT−2

[m] = M

Thus
T = Mp1Lp2(LT−2)p3

solve to get p1 = 0, p2 = 1/2, p3 = −1/2 Hence

P = C

(
d

l

)√
l

g

For a dimensionless function C.
Hence, if we scale d, l by 2, the period will be scaled by

√
2. Also P is indepen-

dent of m.

Example 2.3. Taylor’s estimate to the first atomic explosion.
We want to estimate the radius of the fireball R which has dimension L. R
depends on the time t since the explosion which has dimension T . The density
of air ρ0 which has dimension ML−3 is also involved. Lastly the energy of ex-
plosion E having dimension ML2T−2.
So by doing dimensional analysis, we immediately (since there are only 3 de-
pending dimensions) have R ∝ 5

√
Et2/ρ0. This has allowed Taylor to estimate

the size of E.

3 Forces

3.1 Force and Potential Energy in One (Spacial) Dimen-
sion

Consider a point mass m moving on a straight line with position given by x(t).
We assume that the force F = F (x) depends entirely on position, not velocity
and time.

Definition 3.1. The potential energy V (x) is any function that satisfies F (x) =
−dV/dx.

6



Equivalently,

V (x) = V (0) +

∫ x

0

F (x) dx

where V (0) can be taken arbitrarily. The equation of motion is simply mẍ =
−dV/dx by Newton’s Second Law.

Definition 3.2. The KInetic energy T is defined by T = m|ẋ|2/2

Theorem 3.1. Under the assumptions and definitions above, we have d(T +
V )/dt = 0.

Proof.
d(T + V )

dt
=

2mẋẍ

2
+

dV

dx

dx

dt
= ẋ(mẍ+

dV

dx
) = 0

By Newton’s Second Law.

Note that if we lost that restriction on the time and velocity independence
of the force, we lose the conservation of energy in general.

Example 3.1. Consider a harmonic oscillator, so F (x) = −kx where k is a
positive constant. So V (x) = kx2/2 by choosing the arbitrary constant as 0.
We want to calculate all the stuff to verify the conservation of energy. 3 We can
solve the motion by solving mẍ = −kx which solves to x = A sin(

√
k/mt) +

B cos(
√

k/mt). And plugging in gives dE/dt = 0.

As the first instance of Newton’s Second Law, the conservation of energy
is a useful rule to determine a one dimensional motion. Using conservation of
energy, we have

ẋ = ±
√

2

m
(E − V (x))

which is a first order ODE. So∫ x

x0

du√
2(E − V (u))/m

= t− t0

where x(t0) = x0. In principle we can solve it to obtain the motion.
We can also have some qualitative insight from conservation of energy. Consider
V (x) = λ(x3−3β2x) where λ, β > 0 are constants. We can sketch the potential
energy to find that V has a local maximum at −β, which value happens again
at x = 2β. And it has a local minimum at β, where it again obtain the same
value at −2β. So we can find certain properties of the motion from the graph
if the motion start at rest, then we must have V (x) ≤ V (x0)
Case 1: x0 < −β, it will moves to left so as to reduce the potential and gain
speed.
Case 2: −β < x0 < 2β, then the particle will be restricted in the region −β <
x0 < 2β and will oscillate.
Case 3: x0 > 2β, then it will move to the right.
The case becomes special if we turn to the stationary (or equilibrium) points.
Obviously x0 = −β is an unstable fixed point and x0 = β is a stable fixed
points. So at x0 = 2β, it will end its notion at the fixed point x = −β. In this
case, we can analyse the behaviour by writing down the integral. This can show
that the time to reach x = −β is infinite when we approach to 2β.

3Hey, you literally just proved it.
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3.2 Equilibriums

The points x = ±β in this case are called equilibrium points, at which the
particle can always stay at rest. The condition for this to happen is V ′(x0) = 0.
We are going to analyze the motion near the equilibrium at x0 by expanding its
Taylor series

V (x) ≈ V (x0)+ (x−x0)V
′(x0)+

(x− x0)
2

2
V ′′(x0) = V (x0)+

(x− x0)
2

2
V ′′(x0)

We assume for a moment that V ′′(x0) does not vanish. 4 So we have mẍ =
−(x− x0)V

′′(x0).
If V ′′(x0) > 0, it’s a minimum of V which produces the equation of a harmonic
oscillator with period

√
V ′′(x0)/m. In this case, we say it is a stable equilib-

rium.
If V ′′(x0) < 0, it’s a maximum of V which produces the equation of an expo-
nentially growing solution. Hence it is an unstable equilibrium with growth rate√

−V ′′(x0)/m.

Example 3.2. We look back to a pendulum with mass m, length l and angle
θ. If we think of Newton’s Second Law, one can obtain

F = mlθ̈ = −mg sin θ = − d

dθ
(−mg cos θ)

So we have E = T +V = ml2θ̇2/2−mgl cos θ. One can check that Ė = 0. Also
the potential V (θ) = −mg cos θ has stable equilibrium at θ = 2πk, k ∈ Z and
unstable at θ = π + 2πk, k ∈ Z. So if the initial value of θ is in (−π, π) (or
|V | < mgl), the pendulum will oscillate. If |V | > mgl, then it will go round and
round.
Now we want to analyze the period of oscillations. Suppose the original angle
is at θ0 ∈ (0, π), then the oscillation is going to be θ0 → 0 → −θ0 → 0 → θ0, so
the period is 4 times the time taken for θ0 to 0, hence

P = 4

∫ θ0

0

dθ√
2gl(cos θ − cos θ0)/l2

= 4

√
l

g

∫ θ0

0

dθ√
2 cos θ − 2 cos θ0

=

√
l

g
F (θ0)

For small θ0 we have

F (θ0) ≈ 4

∫ θ0

0

dθ√
θ20 − θ2

= 2π

Hence P ≈ 2π
√
l/g.

3.3 Force and Potential in Three Dimensions

Consider a particle r in motion in three dimensional space. Then mr̈ and
T = m|ṙ|2/2. And the rate of change of T is then

dT

dt
= mṙ · r̈ = ṙ · F

Suppose the particle tranverse a path C from t0 to t1, then

4If it does vanish, we will have to look at higher order terms.
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Definition 3.3. The work done is∫ t1

t0

F · ṙ dt =
∫
C

F · dr

We can also write that the total work equals∫
C

F · dr =

∫
C

Fx dx+ Fy dy + Fz dz

Suppose that the force is a function of the position F (r) (also called a force
field).

Definition 3.4. A force field F (r) is called conservative if F = ∇V for some
V : R3 → R.

If a force field F (r) is conservative, we say V is the potential function. Also
in this case E = T + V (r) conserved. Indeed,

dE

dt
=

dT

dt
+

dV

dt
= mṙ · r̈ +∇V · ṙ = ṙ · (mr̈ − F ) = 0

The total work done by a conservative force F is∫
C

F · dr =

∫
C

−∇V · dr = V (r(t0))− V (r(t1))

So the work done is independent of the path taken.
In particular, if the curve is closed, no work is done.
F is conservative if ∇× F = 0 (given that the domain is simply connected).

3.4 Angular Momentum

Definition 3.5. The angular momentum for a particle with massm and velocity
ṙ is defined as

L = r × p = mr × ṙ

And

G =
dL

dt
= mṙ × ṙ +mr × r̈ = r × F

is defined as the torque, or moment of force.

Note that L,G both depend on the choice of origin, so we must specify them
when talking about angular stuff.

Remark. If r × F = 0 then G = 0, thus L is constant. In this case, we say the
angular momentum is conserved.

3.5 Central Forces

A special type of conservative force occurs when the potential V depends entirely
on |r|, so V (r) = V (|r|) = V (r), 5

F (r) = −∇V (|r|) = −dV

dr
r̂, r̂ =

r

|r|

So F and r are parallel, therefore dL/dt = G = F × r = 0.

5It’s just a tiny abuse of notation. vErY tInY.
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3.6 Gravity

Recall that Newton’s Gravitational Law states

V = −GMm

|r|
, F = −∇V = −GMm

|r|2
r̂ = −GMm

|r|3
r

Note that the m here can be ignored (in the way shown below) if we are only
interested in the motion due to Newton’s Second law:

Definition 3.6. The gravitational potential is defined by Φg(r) = V/M =
−GM/|r|, and the gravitational field by g = −∇Φg(r) = −GMr̂/r2.

The gravitational field and its potential, as functions, are dependent of M
alone. We also have mΦg = V,mg = F . For a set of more than one masses, we
can simple generalize by adding the corresponding fields and potential together
by the superposition principle. Hence for continuous bodies, we can replace the
sum by an integral. In particular, if the body is spherical with radius R and
we have |r| > R, then we do have Φg(r) = −GM/|r|, thus spherical bodies do
behave like a point when measuring from above its surface.

Note. The mass m in Newton’s Second Law mr̈ = F is called the inertial
mass, whilist the mass in Newton’s Gravitational Law F = −GMmr/|r|2 is the
gravitational mass. These two definitions of mass are different in relativity but
are very closely related (about a difference of 10−12). The precise difference will
be discussed in General Relativity.

There are a few results about the effect of gravity.

Example 3.3 (Potential Energy near the Surface). For a mass m at height z
above a spherical mass M with radius R, if z << R, then the potential energy
is given by

V (R+ z) = −GMm

R+ z

= −GMm

R
+

GMm

R2
z + o(R−2)

≈ −GMm

R
+mgz

= const +mgz

For earth, we have the approximation g ≈ 9.8ms−2

Example 3.4 (Escape Velocity). We want to find the critical velocity v, per-
pendicular to r, to leave a planet. Due to the conservation of energy E =
T + V = m|v|2/2 − GMm/R, the particle can escape (i.e. v is nonnegative at
infinity) iff the initial energy has E0 ≥ 0, which happens iff

m|v|2/2 ≥ GMm/R =⇒ |v| ≥
√

2GM

R
= vesc

3.7 Electromagnetic Forces

We have seen previously that for a point charge q, the force has the expression
F = q(E + ṙ × B) In general E,B are functions of r and t. These are known
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as the Lorentz Force Law. For convenience or something, we are going to re-
strict ourselves to time-independent fields. So we want the electric field to be
conservative, i.e. E = −∇Φe where Φe is called the electrostatic potential.

Claim. In a time-independent electromagnetic field, the energy

E = T + V =
m|ṙ|2

2
+ qΦe(r)

is conserved.

Proof.

dE

dt
=

d

dt

(
m|ṙ|2

2
+ qΦe(r)

)
= mṙ · r̈ − qṙ · E
= ṙ(mr̈ − qE)

= 0

So E is constant.

Law. Now consider a point charge Q located at the origin. It generates an
electrostatic field

Φe(r) =
Q

4πϵ0|r|
, E =

Q

4πϵ0|r|2
r̂

where ϵ0 is called the electric constant.

So the force exerted on our point charge q is

F = qE =
Qq

4πϵ0|r|2
r̂

which is called the Coulomb force. One observe the similarity of this with the
gravitational law (inverse-square law). Also, by considering the signs, we find
that same signed charges repel, opposite charges attract.

3.8 Friction

The friction is a contact force, which occurs when two body touches each other
(they may not be of the same form though). It is a convenient description of
complicated molecular-scale physics. So friction is not a kind of fundamental
forces (gravity, EM, strong force, weak force).
We first consider a special kind of friction that is dry friction. Solids stand
on each other exerts an action and reaction pair of normal forces (normal to
the surface of contact), which prevents an object from merging with the other.
There is also a tangential force, which is a tangent to the trajectory on the
surface where the solid is moving.
Now imagine we place a block on a slope. If it remains at rest, the tangential
force is called the static force, which exists even without relative motion. In
this case we have

Law. The static force F has |F | ≤ µs|N | where µs is a constant (depending on
the materials) called the coefficient of static friction, and N is the normal force.
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So the block can rest on the plane provided that α ≤ tan−1(µs) where α is
the inclination.
There is a kinetic frictional force as well, which depends on the kinetic motion
of the object.

Law. The kinetic frictional force has F = µk|N | where µk is also a constant
depending on the materials.

Normally µs > µk > 0.
The most complicated type of friction is the fluid drag, which is the friction
exerted by a solid moving in fluid medium. The model of linear drag says that

F = −k1u

where u is the velocity along the direction of motion and k is a constant. This
model is relevent if we are considering a small object moving through a viscous
fluid.

Law (Stokes’ Law). Consider a sphere with radius R moving in a viscous fluid
with viscosity of η, then we have k1 = 6πηR.

Another drag regime is called the quadratic model, which is for large bodies
moving in less viscous fluid.

F = −k2|u|u

Typically we have ρR2C0 where ρ is the density of the fluid, R is the radius and
C0 is the drag coefficient.
In the case of a linear drag, the rate of work done is F · u = −k1|u|2 and for
quadratic law F · u = −k2|u|3. The fluid gains energy due to this energy loss
by the solid, obviously.
Recall from differential equations that the damp oscillator mẍ = −kx − λẋ
where the last term is a drag. We know how to solve this.

Example 3.5. Projectiles moving under uniform gravity and experiencing lin-
ear drag force. The equation of motion is hence

mẍ = mg − kẋ

Consider the particle start at the origin with some velocity U , so the initial con-
ditions are x(0) = 0, ẋ(0) = U . We can solve the equation in ẋ and substituting
the initial condition gives

ẋ =
mg

k
+ (U −mg/k)e−kt/m

Integrate it again and plug in the other initial condition,

x =
mg

k
t+

m

k
(U −mg/k)(1− e−kt/m)

Set x = (x, y, z), U = U(cos θ, 0, sin θ), g = (0, 0,−g). Hence we have, by simply
plugging things in, that y direction is irrelevant at all, while

ẋ = U cos θe−kt/m, ẏ = 0, ż = (U sin θ +mg/k)e−kt/m −mg/k
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so the x-velocity will eventually go to 0 and z velocity to a terminal value mg/k
(roughly after t = m/k).
As for displacement, we have

x = mU cos θ/k(1− e−kt/m), z = −mgt/k +m/k(U sin θ +mg/k)(1− e−kt/m)

so x is bounded but z is eventually moving (linearly as t large).
Now we want to turn to analyze the range R(U, θ,m, k, g) of the projectile
for it to reach its original position (assuming we project it upwards), so by
dimensional analysis we get the dimensionless quantity to be f(θ, kU/mg) =
f(θ, (U/g)/(m/k)). Note that U/g is proportional to the time taken to reduce
velocity such that it vanishes; and m/k is the approximate time to achieve the
terminal velocity. So weak friction means kU/mg << 1 and strong firction
means kU/mg >> 1.
We have R = U2/gf(θ, kU/mg). If kU/mg << 1, then R ≈ U2/g(2 sin θ cos θ).
If kU/mg >> 1, then R ≈ U2/g(cos θ(mg/kU)).

4 Orbits

The study of orbits it is motivated by the motion of heavenly bodies under the
infludence of the gravitational force due to e.g. a star. Of course, we want to
study a conservative field −∇V where V is a potential of a central force (so it
only depends on r = |r|), that is

mr̈ = −∇V (r)

We shall study the case when the central body is much more massive than the
orbiting body, so that the central body can be regarded as fixed.
Recall that L = mr × ṙ, and in the case for a central force L̇ = 0, so L is
constant. Also we always have L · r = 0, so we can regard the motion as if it is
in a plane.

4.1 Polar Coordinates in a Plane

In an orbit problem, we of course want to use polar coordinate to simplify
calculation. Since we can regard the problem as two-dimensional, we can use
the plane polar coordinates x = r cos θ, y = r sin θ, so we define the unit vectors

er = (cos θ, sin θ)⊤, eθ = (− sin θ, cos θ)⊤

So we can use er, eθ as two basis vectors, but note that they are dependent of
the position. Note that er is always in the direction of the position and eθ the
direction of rotation. Also note that der/dθ = eθ,deθ/dθ = −er, so

der

dt
= eθ θ̇,

deθ

dt
= −er θ̇

Now we turn to consider the implications for the velocity of the particle given
some acceleration. Write r = rer. Consider this as a function of time, then

v = ṙ = ṙer + reθ θ̇. ṙ is the radial component of the velocity while θ̇ is the

angular component of it. So θ̇ has dimension T−1.
As for accelerations, we have

r̈ = v̇ = r̈er + ṙeθ θ̇ + (ṙθ̇ + rθ̈)eθ − rθ̇er θ̇ = (r̈ − rθ̇2)er + (2ṙθ̇ + rθ̈)eθ

13



Example 4.1. Consider the circular motion with a constant angular velocity,
then r = a, θ̇ = ω, so ṙ = θ̈ = 0, hence

r̈ = (r̈ − rθ̇2)er + (2ṙθ̇ + rθ̈)eθ = −aω2er = −ω2r

which is the familiar centripetal acceleration. Newton’s Second Law requires
a force to be applied to cause this acceleration, which is called the centripetal
force, which is in the direction of −er. For the special case that it is actually a
mass on a string, then when the string broke, the mass will move in a straight
line that is tangential to the point where the string broke.

4.2 Motion in a Constant Force Field

We know

mr̈ = F = −∇V (r) = −dV

dr
er

for a force field that is symmetric wrt the origin. Note that

−dV

dr
er = F = m(r̈ − rθ̇2)er +m(2ṙθ̇ + rθ̈)eθ

By looking at the eθ component, we have 2ṙθ̇ + rθ̈ = 0, so

1

r

d

dt
(mr2θ̇) = 0

Hence the quantity mr2θ̇ is constant, but L = r× (mṙ) = mr2θ̇ez. Where ez is
the normal to the plane of motion. Hence the angular momentum is constant
in magnitude. We write h = |L|/m = r2θ̇.
Going to the radial part dV/dr = −m(r̈ − h2/r3), rearranging gives

mr̈ = −dV

dr
+

mh2

r3
= −dVeff

dr
, Veff = V +

mh2

2r2

So the motion of the particle is as if we are considering one dimensional motion
under the influence of a modified potential Veff .
The energy of the particle is then

E = T + V =
1

2
m|ṙ|2 + V (r) =

1

2
mṙ2 + Veff(r)

Example 4.2. For gravity, we have

V (r) = −GMm

r
, Veff(r) = −GMm

r
+

mh2

2r2

So Veff is minimum at r = h2/GM and minimum energy is

Emin = −m(GM)2/(2h2)

At the minimum (which is a stable equilibrium), both r, θ̇ are constants.
At any Emin < E < 0, the particle oscillates. Let r0 be the point where Veff = 0,
then r0 < rmin ≤ r ≤ rmax. So it gives a bounded non-circular orbit with θ̇
varying when r varies. rmin is called the periapsis and rmax is called apoapsis.
For E > 0, the particle can move from a long distance and escape, which is an
unbounded orbit.
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4.3 Stability of Circular Orbits

Consider the potential V (r), we want to investigate whether a circular orbit
exists and whether it is stable.
Assume that the angular momentum h is given and is nonzero. For circular
orbit r(t) = r⋆ is a constant, then

r̈ = 0 =⇒ V ′
eff(r⋆) = 0

which is the condition for circular orbit. Note that if V ′′
eff(r⋆) > 0, then it is a

minimum, so r⋆ is a stable fixed point. So if we express it as V (r), we get

0 = V ′
eff(r⋆) = V ′(r⋆)−

mh2

r3⋆
= 0 =⇒ V ′(r⋆) =

mh2

r3⋆

And it is stable if

0 < V ′
eff(r⋆) = V ′′(r⋆) +

3mh2

r4⋆
= V ′′(r⋆) +

3V ′(r⋆)

r⋆

So in terms of F (r), we have

F ′(r⋆) +
3F (r⋆)

r⋆
< 0

Example 4.3. If we take V (r) = −km/rp for k, p > 0 for a circular orbit with
radius r⋆, we can solve the above equation to get r⋆ = (pk/h2)1/(p−2). So unless
p = 2, there exists a circular orbit.
As for stability, we have

V ′′(r⋆) +
3V ′(r⋆)

r⋆
=

p(2− p)k

rp+2
⋆

> 0

which is positive iff p < 2.

4.4 The Orbit Equation

The shape of the orbit is obviously governed by the joint variation of r and θ
(both as functions of t). In principle, the energy equation can be helpful to
determine r(t), i.e.

E =
1

2
mṙ2 + Veff(r) =⇒ t = ±

√
m

2

∫
dr√

E − Veff(r)

Given r(t), since we already know the conservation of angular momentum r2θ̇ =
h, we can then deduce θ(t). But this might not always yield an analytic solution.
An interesting approach if one is only interested in the trajectory is to use θ as
the dependent variable. We can write

d

dt
= θ̇

d

dθ
=

h

r2
d

dθ

So plugging in Newton’s Second Law,

m
h

r2
d

dθ

(
h

r2
dr

dθ

)
− mh2

r3
= F (r)
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which then becomes, by substituting u = 1/r,

d2u

dθ2
+ u = − 1

mh2u2
F

(
1

u

)
This is called the orbit equation. We can then solve for u as a function of θ,
and then θ̇ = hu2 can help us to deduce the time evolution.

4.5 The Kepler Problem

We want to solve the case for gravitational central force given by

F (r) = −mk

r2

So the orbit equation becomes

d2u

dθ2
+ u =

k

h2

Which is linear in u. We know how to solve this. Indeed, the general solution
is given by

u =
k

h2
+A cos(θ − θ0)

WLOG we assume A ≥ 0.
If A = 0, then u is constant hence we obtain a circular orbit. If A > 0, u obtains
its maximum (hence r obtains its minimum) at θ = θ0. We may choose θ0 = 0,
then

r =
1

u
=

ℓ

1 + e cos θ
, ℓ =

h2

k
, e =

Ah2

k

Which is the polar coordinate form of a conic section with focus at the origin.
e is called the eccentricities, which determines the shape of the trajectory. By
rearranging we obtain (since r = ℓ− ex and r cos θ = y)

(1− e2)x2 + 2elx+ y2 = ℓ2

Therefore if e ∈ [0, 1), it is an ellipse that is bounded by

ℓ

1 + e
≤ r ≤ ℓ

1− e

Or analytically we can rewrite the equation as

(x+ ea)2

a2
+

y2

b2
= 1, a =

ℓ

1− e2
, b =

ℓ√
1− e2

≤ a

a, b represents the semimajor and semiminor axes respectively. In particular,
for e = 0, the path is a circle with center being the central mass.
For e > 1, the equation gives a hyperbola, so r → ∞ when θ → ±α where α =
cos−1(−1/e) ∈ (π/2, π). We can also transform the equation ot the standard
equation for hyperbola

(x− ea)2

a2
− y2

b2
= 1
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with a = ℓ/(e2 − 1), b = ℓ/
√
e2 − 1. This case represents incoming body with

large velocity which is deflected by gravitational force. By simple calculations
the asymptotes are y = ∓b(x−ea)/a, so bx±ay = eba. And the normal vectors
are n = (b,±a)/

√
a2 + b2.

Now consider the perpendicular distance between incoming mass and orgin, we
have

r · n = (x, y) ·
(

b√
a2 + b2

,± a√
a2 + b2

)
=

eba√
a2 + b2

= b

This is sometimes called the impact parameter.
The marginal case that e = 1 yields a parabola with equation

r =
ℓ

1 + cos θ

where r → ∞ as θ → ±π. In Cartesians this reduces to y = 2ℓ(ℓ− x).
On the other hand, we might want to analyze the linkge between the energy
and the eccentricity of the trajectory. Recall that

E =
1

2
m(ṙ2 + r2θ̇2)− mk

r

=
1

2
mh2

((
du

dθ

)2

+ u2

)
−mku

=
mk

2ℓ
(e2 − 1)

Hence bounded orbits have e < 1, E < 0 and unbounded ones have e > 1, E > 0.
The marginal case is then e = E = 0.

Law (Kepler’s Laws of Planetary Motion). 1. Orbit of planet is ellipe with the
Sun at focus.
2. Line between the planet and the sun sweeps cut equal area in equal time.
3. Square of period P is proportional to cube of semimajor axis.

1 is consistent with the solutrion to the orbit equation that we have obtained
earlier, and 2 follows from the conservation of angular momentum (since the rate
of change of area is approximately r2θ̇/2 = h/2). Hence the area of the ellipse
is A = hP/2 where P is the period. Therefore πab = hP/2, rearranging gives
the third statement.

4.6 Rutherford Scattering

Consider the motion in a repulsive force under inverse square law:

V (r) =
mk

r
, F (r) =

mk

r2

Then the orbit equation solves to give

1

r
= u = − k

h2
+A cos(θ − θ0)

WLOG θ0 = 0, A ≥ 0. So

r =
ℓ

e cos θ − 1
, ℓ =

h2

k
, e =

Ah2

k
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If there is sometime where r > 0, then we necessarily have e > 1, therefore
the trajectory is a hyperbola. As previously known, r → ∞ as θ → ±α where
α = cos−1(1/e) ∈ (0, π/2) and in Cartesian,

(x− ea)2

a2
− y2

b2
= 1, a =

ℓ

e2 − 1
, b =

ℓ√
e2 − 1

Suppose the speed of the particle from far away be v, that is With x-axis parallel
to the incoming asymptote, as t → −∞

r(t) → (x(t), b, 0), ṙ(t) → (−v, 0, 0)

Then r × ṙ → (0, 0, bv) Therefore the angular momentum per unit mass is bv,
so

b =
h2

k

k

bv2
=

h2

k
tan

β

2
=

b2v2

k
tan

β

2
, β = 2 tan−1

(
k

bv2

)
Rutherfold (1911) fired α particles at gold leaf to obtain experimental results
of the scattering. But Scattering angles greater than π/2 is observed in the
experiment, from which he concluded that the positive charge must be highly
concentrated.

5 Rotating Frames of Reference

Newton’s Second Law works only in inertial frames. A rotating frame of refer-
ence (wrt an inertial frame) is clearly non-inertial in general. So the equation
of motion in this frame needs to be modified relative to Newton’s Second Law.
Let S be an inertial frame and S′ another frame that is rotating along z-axis in
S with angular velocity ω = θ̇ where θ is the angle between x, y-axis in S and
in S′. Denote the basis vectors of S by e1 = x̂, e2 = ŷ, e3 = ẑ and that of S′ by

e′1 = x̂′, e′2 = ŷ′, e′3 = ẑ′. Consider a particle at rest in S′ viewed in S, then its
velocity will be (

dr

dt

)
S

= w × r = ωẑ × r

Conventionally we take ω > 0 as anticlockwise. We certainly have some formula
that applies to the basis vectors of S′, namely(

d

dt
e′i

)
S

= ω × e′i

So for a time-dependent vector a we have

a(t) =

3∑
i=1

a′i(t)e
′
i(t)

So when we observe in S′, the rate of change has(
d

dt
a(t)

)
S′

=

3∑
i=1

(
d

dt
a′i(t)

)
e′i(t)
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Therefore (
d

dt
a

)
S

=

3∑
i=1

da′i
dt

e′i +

3∑
i=1

a′i

(
de′i
dt

)
S

=

3∑
i=1

da′i
dt

e′i +

3∑
i=1

a′i(ω × e′i)

=

(
d

dt
a

)
S′

+ ω × a

Which is the key identity that relates rate of change in one frame to that in the
other. If we apply this to the position vector r, then(

d

dt
r

)
S

=

(
d

dt
r

)
S′

+ ω × r

And applying to velocity,(
d2r

dt2

)
=

((
d

dt

)
S′

+ ω×
)((

d

dt
r

)
S′

+ ω × r

)
=

(
d2r

dt2

)
S′

+ 2ω ×
(
dr

dt

)
S′

+ ω̇ × r + ω × (ω × r)

This gives the acceleration.

5.1 Equation of Motion in a Rotating Frame

S is inertial, therefore Newton’s Laws of Motion applies, hence

m

(
d2r

dt2

)
S

= F

Hence we have

m

(
d2r

dt2

)
S′

= F −m

(
2ω ×

(
dr

dt

)
S′

+ ω̇ × r + ω × (ω × r)

)
The second term is known as the fictitious forces, whcih are needed to explain
the motion observed in a non-intertial frame. We give names to each term in
the fictitious forces:
Coriolis force: −2mω × (dr/dt)S′ .
Euler force: −mω̇ × r.
Centrifugal force: −mω × (ω × r). Sometimes we take ω to be constant, so the
Euler force will be zero.

5.2 Centrifugal Force

Note that for ω = ωω̂ with ω̂ being unit,

−mω × (ω × r) = −m((ω · r)ω − |ω|2r)
= mω2(r − ω̂(ω̂ · r))
= mω2r⊥
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where r⊥ is the projection of r onto the plane that is perpendicular to ω, that
is basically the plane of rotation. So the centrifugal force is directed away from
the rotatrion axis and its magnitude is mω2d where d is the distance of the
particle to the rotation axis. Note that

|r⊥|2 = |r|2 − (ω̂ · r)2 = |r × ω̂|2

While we also have ∇|r⊥|2 = 2r − 2ω̂(ω̂ · r) = 2r⊥. Therefore

mω2r⊥ = ∇
(
1

2
m|r × ω|2

)
Therefore the centrifugal force is a potential force. On a rotating planet, we
can combine the centrifugal force with gravitational force to create the notion
of an effective gravity g

eff
= g + ω2r⊥. Consider a point P on the surface of

the rotating planet, where the rotation axis is through the poles. We define
a local coordinate at P where ẑ is the normal pointing outwards, ŷ is tangent
northward, and x̂ is the tangent eastward. Assume that the point P is at
latitude λ. So r = Rẑ where R is the radius of the planet. Also, as for the
angular velocity, ω = ω(ŷ cosλ+ x̂ sinλ).

g
eff

= −gẑ + ω2R cosλ(ẑ cosλ− ŷ sinλ)

= −(g − ω2R cos2 λ)ẑ − ω2R cosλ sinλŷ

So the angle between g and g
eff

would be

α = tan−1

(
ω2R cosλ sinλ

g − ω2R cos2 λ

)
For earth, ω ≈ 2π/86400, so upon calculation, we obtain α ≈ 3.5× 10−3 which
is very small.

5.3 The Coriolis Force

The coriolis force
−2mω × (dr/dt)S′ = −2mω × v

is perpendicular to the velocity, so it does not do any work. This is just like the
magnetic force. We consider te horizontal motion on a rotating planet again.
The velocity is given by v = vxx̂ + vy ŷ. As before in our choice of model we
have ω = ω(ŷ cosλ+ ẑ sinλ). Therefore

−2mω × v = −2mω(ŷ cosλ+ ẑ sinλ)× vxx̂+ vy ŷ

= 2mω sinλ(vyx̂− vxŷ) + 2mω cosλvxẑ

So by considering tthe sign, the horizontal coriolis force gives a acceleration,
which is to the right if we are on the northern hemisphere, and to the left on
the southern hemisphere. In atmosphere, the coriolis force can be balanced
by a pressure gradient. The horizontal motion then gives the difference in
the direction of cyclones, which is anticlockwise in northern hemisphere and
clockwise in the southern hemisphere.
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Example 5.1. Consider a ball dropped from the top of a tower, we want to
know where does it land. We have

r̈ = g − 2ω × ṙ − ω × (ω × r) = g − 2ω × ṙ +O(ω2)

where the rotation is slow (i.e. ω2R/g is small). Integrate it to get

ṙ = gt− 2ω × (r − r(0)) +O(ω2)

We substitute this back to the original equation to get r̈ = g−2ω×(gt)+O(ω2),
which solves to

r = r(0) +
1

2
gt2 − ω × g

t3

3
+O(ω2)

So if we take g = (0, 0,−g), ω = (0, ω, 0) and r(0) = (0, 0, R+ h), then

r =

(
1

3
ωgt3, 0, R+ h− 1

2
gt2
)

So the time to reach the ground would be t =
√
2h/g, then it would travel a

horizontal distance of approximately

1

3
ωg

(
2h

g

)3/2

(Foucaul Pendulum) Consider a pendulum at north pole, then the plane of
its oscillation is rotating opposing the direction of rotation of the earth. At
latitude λ, the angular velocity of plane of rotation is ω sinλ, therefore the
period 2π/(ω sinλ) which is greater than a day if λ < π/2.

6 System of Particles

We have considered the motion of a single particle in a force field, so we will
now turn to a system of particles where they act on each other.
Consider N particles, namely particles 1, . . . , i, . . . , N having masses mi and
positions ri(t). The momentums are then pi = miṙi. Newton’s Second Law
for one of these particles is then mir̈i = ṗi = Fi. Divide the forces exerted

in two parts: the external forces Fi
ext (causes by something outside the N

particles) and internal forces Fij which is the force exerted by particle j on i.
Conventionally we take Fii = 0. So basically

Fi = Fi
ext +

∑
j

Fij

Newton’s Third Law then tells us Fij + Fji = 0, like gravitation.

6.1 Motion of the Centre of Mass

The total mass of the system is M =
∑

i mi, then we define the centre of mass
to be a location

R =
1

N

N∑
i=1

miri

21



The total linear momentum would be P =
∑

i pi =
∑

i miṙ = MṘ. Consider
the rate of change of the momentum. By Newton’s Secon Law,

Ṗ = MṘ =

N∑
i=1

ṗi =

N∑
i=1

Fi
ext +

N∑
i=1

N∑
j=1

Fij =

N∑
i=1

Fi
ext = F ext

By Fij = −Fji. So the motions of the centre of mass closely resembles that of a
single particle with mass M and position R, which is reassuring since it means
we can consider finite (bounded) bodies as particles. So Newton’s Second Law
applies to macroscopic objects. A simple conclusion from this is if F ext = 0,
then the total momentum of the system Ṗi =

∑N
i=1 ṗi is conserved. So in this

case, we can set up the inertial frame as the centre of mass frame, in which
Ṙ = 0.
Now we turn to consider the angular momentum. Consider the total angular
momentum about the origin, which is L =

∑
i ri × pi, then

L̇ =

N∑
i=1

ri × ṗi +

N∑
i=1

ṙi × pi

=

N∑
i=1

ri × ṗi

=

N∑
i=1

ri × Fi
ext +

N∑
i=1

N∑
j=1

ri × Fij

= Gext +
1

2

N∑
i=1

N∑
j=1

(ri − rj)× Fij

The last term is sometimes zero, in which case the rate of change would be Gext,
the total external torque.

6.2 Motion relative to the Centre of Mass

Write ri = R + si, so si is the position of particle i relative to the centre of
mass. Then

N∑
i=1

misi =

N∑
i=1

mi(r1 −R) =

N∑
i=1

miri −MR = 0

Consequently
∑

i miṡi = 0. As for the total linear momentum, since we have
the above,

P =

N∑
i=1

mi(Ṙ+ ṡi) = MṘ
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The angular momentum would have, exploiting the same fact,

L =

N∑
i=1

mi(R+ si)× (Ṙ+ ṡi)

=

N∑
i=1

miR× Ṙ+

N∑
i=1

misi × ṡi +

(
N∑
i=1

misi

)
× Ṙ+R×

(
N∑
i=1

miṡi

)

=

N∑
i=1

miR× Ṙ+

N∑
i=1

misi × ṡi

= MR× Ṙ+

N∑
i=1

misi × ṡi

which is the angular momentum of the centre of mass plus the total angular
momentum relative to the centre of mass. The total kinetic energy is

T =

N∑
i=1

1

2
mi|ṙi|2

=

N∑
i=1

1

2
mi|Ṙ+ ṡi|2

=

N∑
i=1

1

2
mi|Ṙ|2 +

N∑
i=1

1

2
mi|ṡi|2 + Ṙ ·

(
N∑
i=1

miṡi

)

=
1

2
M |Ṙ|2 + 1

2

N∑
i=1

mi|ṡi|2

Now is the energy conserved? Assuming F ext is conserved, then F ext = −∇V ext.
Take Fij to be conserved as well and its potential purely depends on the seper-

ation between the particles, then Fij = −∇Vij(ri − rj). We can show that the
total energy is conserved under these assuming these by just differentiating.

6.3 The Two Body Problem

The centre of mass is R = (m1r1 + m2r2)/M Consider the seperation vector
r = r1 − r2, so we can write {

r1 = R+ m2

m r

r2 = R− m1

m r

Since the external force is assumed to be zero, R moves with constant velocity.
Consider r̈, then r̈ = F12/m1 − F21/m2 = (1/m1 + 1/m2)F12. Hence

µr̈ = F12(r), µ =
m1m2

m1 +m2

Here µ is called the reduced mass. In the case of the gravitational force, we
have

µr̈ = −Gm1m2

|r|3
r =⇒ r̈ = −G(m1 +m2)

r

|r|3
= −GM

|r|3
r
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which is just like the motion of two particles entirely due to a mass M at the
origin. So both masses perform orbits with similar shape but different sizes.

6.4 Variable Mass Problem

Think of a rocket whose mass decreases as it moves due to the exhausted mass.
So its mass itself is variable. So we need to apply Newton’s Second Law to the
whole system including the exhausted mass. Suppose the mass and the velocity
of the rocket is m(t), v(t). And the exhausted mass has a speed u relative to the
rocket when leaving the rocket. At time t, when we look at this instant only, we
can ignore what happened in the past, hence after a small time interval δt, mass
of m(t) = m(t + δt) is exhausted with speed v(t) − u + o(δt). By conservation
of momentum,

m(t+ δt)v(t+ δt) + (m(t)−m(t+ δt))(v(t)− u+ o(δt)) = m(t)v(t)

Hence

(mv′ +m′u)δt ≈ m(t+ δt)(v(t+ δt)− v(t)) + (m(t+ δt)−m(t))u+ o(δt) = 0

Since F = ṗ, it generalises to

mv′ +m′u = F

where F is the total external force exerted on the rocket. This is called the
rocket equation. If F = 0, we have mv′ + m′u = 0 which we can solve to get
v = v0 + u log(m0/m(t)).

7 Rigid Bodies

Definition 7.1. A rigit body is an extended mass with a finite volume as a
system of particles that are constrained such that the mutual distances between
them does not change.

Definition 7.2. An isometry is a distance-preserving map in the space, e.g.
rotation, translation, etc..

So a rigid body is a system of particle moving under isometries.

7.1 Angular Velocity

Recall that we can have a vector angular velocity ω which points to the axis of
rotation and has magnitude equal to the scalar angular velocity ω of the point
mass r. So ṙ = ω× r. If the particle has mass m, we can write down the kinetic
energy T = m|ṙ|2/2 = mω2r2⊥/2 where r⊥ = |n × r| where n is a unit vector
and ω = ωn. We write I = mr2⊥ as the moment of inertia, so T = Iω2/2. Note
that the moment of inertia is dependent on the axis.
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7.2 Moment of Inertia for a Rigid Body

Consider a rigid body made up of N particles following the notation we intro-
duced earlier. The body (i.e. all the particles within it) would rotate about
an axis through the origin with angular velocity ω. For particle i, we have
ṙi = ω × ri. Note that

d

dt
|ri − rj |2 = 2((ω × (ri − rj)) · (ri − rj)) = 0

So the particles do stay the same distance apart. The kinetic energy of the
rotating body is then going to be

T =

N∑
i=1

1

2
mi|ṙi|2 =

1

2
ω2

N∑
i=1

mi|n× ri|2 =
1

2
ω2

N∑
i=1

mi(ri)
2
⊥ =

1

2
ω2I

where I is called the moment of inertia for the body. Correspondingly, we can
consider the angular momentum, where

L =

N∑
i=1

Li =

N∑
i=1

miri × (ω × ri) = ω

N∑
i=1

miri × (n× ri)

Consider its component in the direction of the axis of rotation,

L · n = ω

N∑
i=1

min · (ri × (n× ri)) = ω

n∑
i=1

mi|n× ri|2 = Iω

So the direction of L in the direction of the axis of rotation is Iω. In general,
L is not parallel to ω, so we need to go back to the vector expression. Observe
that L as a function of ω is linear, so

L =

N∑
i=1

miri × (ω × ri) =

N∑
i=1

mi(|ri|2ω − |ri · ω|ri) = Iω

where I here is a tensor (i.e. a (multi)linear map) which in this case is a 3× 3
matrix. So under suffix notation, Lα = Iαβωβ . I is a symmetric tensor (matrix)
by symmetry. We have

Iαβ =

N∑
i=1

mi(|ri|2δαβ)− (ri)α(ri)β

Now I is diagonalizable so we can choose our favourite basis (principal axes) to
make I diagonal. To get L to be at the same direction as ω, we need the object
to rotate wrt a principal axis

7.3 Calculation of Moment of Inertia

For a solid body, we replace mass-weighted sums by mass-weighted volume
integrals. Consider a body with volume V with density ρ(r), so its mass, center
of mass and moment of inertia are

M =

∫
V

ρdV,R =
1

M

∫
V

ρ(r)r dV, I =

∫
V

ρ(r)|r⊥|2 dV =

∫
V

ρ(r)|n× r|2 dV

For curves and surfaces, we can use line and area integrals accordingly.
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Example 7.1. 1. For uniform thin ring of mass M and radius a with rotation
axis n through the center of the ring and perpendicular to the plane where the
ring is on. In this case, we can reduce volume integral to line integral. We have
ρ = M/(2πa), so

I =

∫ 2π

0

(
M

2πa

)
a2a dθ = Ma2

Every point in the body is of the same distance from the axis |r⊥| = |n×r| = a.
2. Consider a uniform thin rod of mass M and length l with axis of rotation
through one end and perpendicular to the rod. So

I =

∫ l

0

(
M

l

)
x2 dx =

1

3
Ml2

3. Consider a uniform thin disk with mass M and radius a with the axis of
rotation through its center and perpendicular to the plane where the disk is in.
So we use an area integral

I =

∫ a

0

∫ 2π

0

(
M

πa2

)
r2r dθ dr =

Ma2

2

4. Using the same disk but choose the axis to be one through the center and in
the same plane as the disk. In this case,

I =

∫ a

0

∫ 2π

0

(
M

πa2

)
(r2 sin2 θ)r dθ dr =

1

4
Ma2

5. Consider a solid sphere (a ball) of mass M and radius a with axis of rotation
through its center, so spherical polars will be a good choice. We assume WLOG
that n is the z direction (so θ = 0 along n). By uniform density, we have
ρ = 3M/(4πa3), therefore

I =

∫ a

0

∫ π

0

∫ 2π

0

3M

4πa3
(r2 sin2 θ)r2 sin θ dϕdθ dr =

2

5
Ma2

There are a few simple but general results to simplify calculation moment
of inertia.

Theorem 7.1 (Perpendicular Axis Theorem). For a two dimensional body on
a plane (aka lamina),

Iz = Ix + Iy

where Iz is the moment of inertia along the z axis chosen to be a normal to
the plane and Ix, Iy are the moments of inertia along two chosen perpendicular
axes on the plane so that all three axes meet at the origin.

Proof. We have

Ix =

∫
A

ρy2 dA, Iy =

∫
A

ρx2 dA

But

Iz =

∫
A

ρr2 dA =

∫
A

ρ(x2 + y2) dA = Ix + Iy

As desired
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Sometimes the lamina is symmetric enough such that Ix = Iy, so Iz = 2Ix.
This corresponds to the example of a disk. Note that this theorem works for
lamina but does not work for 3 dimensional bodies.

Theorem 7.2 (Parallel Axes Theorem). If a rigid body of mass M has moment
of inertia Ic about an axis through its center of mass, then for another axis
parallel to the original axis with a distance d away, then the moment of inertia
I about the new axis is I = Ic +Md2.

Proof. Choose Cartesian axes such that the centre of mass is at the origin and
the rotation axis along z-axis. Also, choose x, y-axes such that the second axes
of rotation is through the point dx̂ = (d, 0, 0), then

Ic +Md2 =

∫
V

ρ(x2 + y2) dV +Md2

=

∫
V

ρ((x− d)2 + y2) dV + 2d

∫
V

ρx dV

=

∫
V

ρ((x− d)2 + y2) dV = I

Since the axes are chosen in a way that the origin is the center of mass.

Example 7.2. Consider a uniform disk as before with the axis of rotation
perpendicular to it through a point on the edge has I = 3Ma2/2.

7.4 Motion of a Rigid Body

General motion of a rigit body can be described by the composition of trans-
lation (of the center of mass) following some trajectory R(t) together with a
rotation about the center of mass. Following the previous discussion, we specify
points in the body relative to the center of mass by writing ri = R + si. Also
recall that

∑
i miri = MR, therefore

∑
i misi = 0. If a body rotates about its

center of mass, with angular velocity ω, so ṡi = ω× si and ṙi = Ṙ+ω× si. The
kinetic energy, as we recall, satisfies

T =
1

2
M |Ṙ|2 + 1

2

N∑
i=1

mi|si|2 =
1

2
M |Ṙ|2 + 1

2
Icω

2

where Ic is the moment of inertia parallel to ω and through the center of mass.
So T is the sum of translational KE and rotational KE. We have also shown
before that for a general multiparticle system, linear and angular momentum
obey Ṗ = F , L̇ = G where F ,G are the total external applied force and torque
respectively. For a rigit body, these two equations determine the translational
and rotational motion. Sometimes, we can exploit the conservation of energy as
an easier method of solution.
L,G depend on the choice of origin, and we can the origin to be any point fixed
in an inertial frame (shown previously). Or, we can define L and G about the
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center of mass, and the equation above, as we shall show, still holds. Take

G =
d

dt

(
MR× Ṙ+

N∑
i=1

misi × ṡi

)

= MR× R̈+
d

dt

(
N∑
i=1

misi × ṡi

)

= R× F ext +
d

dt

(
N∑
i=1

misi × ṡi

)

Therefore

d

dt

(
N∑
i=1

misi × ṡi

)
= G−R× F ext

=

N∑
i=1

ri × Fi
ext −R×

N∑
i=1

Fi
ext

=

N∑
i=1

(ri −R)× Fi
ext

= Gc

Consider now the motion in a uniform gravitational field with acceleration due
to gravity g, then the total gravitational force and torque acting on a rigit body
would be the same as if it is acting on a particle of mass m located in the center
of mass (hence it is also called the center of gravity). So

F =

N∑
i=1

Fi
ext =

N∑
i=1

mig = Mg

similarly

G =

N∑
i=1

Gi
ext =

N∑
i=1

ri × (mig) = MR× g

Note that the gravitational torque about the center of mass is zero since

Gc =

N∑
i=1

si × (mig) =

(
N∑
i=1

misi

)
× g = 0

Consider the gravitatioinal potential −mr · g, then

V ext =

N∑
i=1

V ext
i =

N∑
i=1

(−miri · g) = −MR ·G

Example 7.3. 1. Throw a stick in the air. So the center of mass follows
a parabolic curve and the angular velocity of the stick about center of mass
is constant by conservation of energy (or because gravitational torque about
center of mass is 0).
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2. A uniform rod of length l and mass M fixed at a pivot point O at one end
and makes an angle θ with the downward vertical. We say this is a compound
pendulum since the mass is distributed instead of concentrated. Consider the
angular velocity and angular momentum about the pivot. We have ω = θ̇, L =
Iθ̇ = Ml2θ̇/3. So the gravitational torque about O becomes −Mgl sin θ/2, so
L̇ = G =⇒ Iθ̈ = −Mgl sin θ/2, so

θ̈ = −3

2

g

l
sin θ

which just looks like a simple pendulum of length 2l/3 (in fact equivalent to it).
So for small oscillations, the frequency is f =

√
3g/(2l) and period 2π/f .

Alternatively we can think of the energy, then

E = T + V =
1

2
Iω2 − Mgl

2
cos θ

So

0 =
dE

dt
= θ̇

(
Iθ̈ +

Mgl

2
sin θ

)
= 0

which produces the same result as above.

7.5 Sliding and Rolling

Consider a cylinder or sphere with radius a moving along a stationary horizontal
surface, then the general motion is a translation of the center of mass with
velocity v together with rotation about the center of mass with angular velocity
ω. Let P be the instantaneous point of contact, then the horizontal velocity of
this point is given by vslip = v − aω.
There are two extreme cases:
1. Pure sliding, where we have ω = 0, vslip = v ̸= 0. So the point of contact
slips through the surface (probably due to a kinetic frictional force).
2. Pure rolling, where we have ω, v ̸= 0 but vslip = v− aω = 0. In this case, the
contact point is stationary at any point, which produces rolling without sliding.
Instantaneously, we can view the motion of the body as the rotation of the body
about the contact point. Also note that these also apply to inclined plane.

Example 7.4. Consider a cylinder of radius a and mass m rolling through
inclined plane at angle α to the horizontal. Let x be the distance down slope
travelled by the center of mass, v = ẋ and Mg the gravitational force, N the
normal reaction and F the frictional force. For the cylinder to be purely rolling,
we must have v − aω = 0, so v = aω.
The kinetic energy has

T =
1

2
Mv2 +

1

2
Iω2 =

1

2

(
M +

I

a2

)
v2

Note that due to their directions the normal and frictional force (in the case
where vslip = 0) do no work. Now the energy T + V is conserved where V =
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−Mgx sinα, so

0 =
d(T + V )

t

=
d

dt

(
M + I/a2

2
ẋ2 −Mgx sinα

)
= (M + I/a2)ẋẍ−Mgẋ sinα

=⇒
(
M +

I

a2

)
ẍ = Mg sinα

Note that when I = 0, this is exactly the equation for a frictionless particle,
therefore the rotation makes acceleration smaller. Now for a cylinder in question,
we have I = Ma2/2, hence

ẍ =
2

3
g sinα

We can also obtain the result by using forces and torques. By considering the
rate of change of linear momentum along the plane, we have Mv̇ = Mg sinα−F
and the rate of change of angular momentum about the center of mass then gives
Iω̇ = aF . So as it is rolling, v̇ = aω̇, whence

Mv̇ = Mg sinα− Iv̇

a2

Thus (M + I/a2)v̇ = Mg sinα as above.
There is yet another way to do this: Consider the torque about P , we have
IP = I + Ma2 by the parallel axis theroem, also the gravitational torque has
IP ω̇ = Mga sinα. So v = aω gives (I +Ma2)v̇/a = Mga sinα.

Example 7.5. We want to study the transition from a sliding motion to a
rolling one. Consider a snooker ball on a horizontal plane hit by a cue instan-
taneously which gives it an initial velocity v0. Initially v = v0 and ω0, where
sliding occurs (so no rotation at t = 0). The kinetic frictional force obeys
F = µN = µMg where µ is a constant (coefficient of kinetic friction). The lin-
ear motion has Mv̇ = −F and the angular motion Iω̇ = aF . Also for a sphere
I = 2Ma2/5, hence we have, by integrating,{

v = v0 − µgt

ω = 5µgt/(2a)

So when the ball is still moving,

0 ≤ vslip = v − aω = v0 −
7

2
µgt

So the total time of rolling is troll = 2v0/(7µg). During 0 ≤ t ≤ troll, the friction
acts to decrease v and increase ω till the no-slip condition is satisfied, when
t = troll and v = vroll = 5v0/7. But at troll, the rolling could as well persist but
the friction does no further work. At t = troll, the kinetic energy is

T =
1

2
Mv2 +

1

2
Iω2 =

1

2
M

(
1 +

2

5

)
v2roll =

5

7

(
1

2
Mv20

)
So the loss of KE due to friction has a total of∫ troll

0

Fvslip dt =

∫ troll

0

F

(
v0 −

7

2
µgt

)
dt =

1

7
Mv20
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8 Special Relativity

The Newtonian Mechanics works perfectly (maybe not) well in low-speed cases,
but when the object has gotten a pretty big velocity, Newtonian physics is
no longer a good approximation to the situation that arises. Therefore, in
1905, Albert Einstein proposed the Special Theory of Relativity, in which the
main differences involved are due to the treatment of the speed of light c =
299792458ms−1 ≈ 3× 108ms−1.
Special Relativity is based on two postulates:

Postulate (Principle of Relativity). The laws of physics are the same in all
inertial frames.

Postulate (Speed of Light). The speed of light in vacuum is the same in all
inertial frames.

The need for the second postulate arises from many experiments that failed
to detect the dependence of speed of light relative to inertial frames. But the
addition of this postulate then leads to a radical revision of our understanding
of space and time and the relationships of energy, momentum and mass.
Consider two frames S, S′, then if they are related by Galilean transformation,
we have

x′ = x− vt, y′ = y, z′ = z, t′ = t

Write the path of light ray in S as x = ct, then in S′, we have x′ = x − vt =
(c − v)t′, so it doesn’t work. Therefore we need a new form of transformation
to describe inertial frames in order to accomodate our postulates. We have to
treat space and time equally.

8.1 Lorentz Transformation

Consider inertial frames S, S′. Assume their origins coincide, i.e. the spacial
origins of the frames coincide when t = t′ = 0. Suppose S′ is moving along the
x direction relative to S with speed v, then we can ignore the y, z directions
for the moment. So we are interested in the relationship between (x, t) and
(x′, t′). By the Principle of Relativity, something moving in constant velocity in
S must also do so in S′. In (x, t) plane, the constant velocity path is a straight
line, so it is also the case in (x′, t′). So the transformation must be linear. The
origin of S′ moves with speed v in S, this implies that x′ = γ(x − vt). where
γ depends on |v|. By symmetry, x = γ(x′ + vt′). Consider a light ray going
through the origins at time t = t′ = 0. In S, the equation of the light ray in S
is x = ct and also in S′, x′ = ct′. So if we plug these in, then ct = γ(c + v)t′

and ct′ = γ(c− v)t. We then have

γ2(1− v/c)(1 + v/c) = 1 =⇒ γ =
1√

1− v2/c2

We call γ the Lorentz factor. Consequently we obtain the Lorentz transforma-
tion (or Lorentz Boost):{

x′ = γ(x− vt)

t′ = γ(t− vx/c2)
,

{
x = γ(x′ + vt′)

t = γ(t′ + vx′/c2)
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The coordinates y, z, y′, z′ does not change if the velocity is entirely on the x-
direction. Now γ > 1 whenever v ̸= 0 and γ → ∞ if |v| → c. When v is small,
we can approximate γ = 1, which gives us the standard Galilean transformation.
To check that the speed of light indeed remains constant in two frames. Suppose
a light ray travels in x direction, then x = ct, so

x′ = γ(x− vt) = γ(c− v)t = γ2(c− v)

(
t′ +

vx′

c2

)
=⇒ x′ = ct′

For a light ray that is travelling in the y direction, y = ct, x = z = 0. In S′, we
have

x′ = γ(−vt) = −γvt, t′ = γt, y′ = ct, z′ = 0

So the speed of the light ray will be√(
−γt

γ

)2

+

(
c

γ

)2

=
√
c2 = c

So the speed of light is not changed, but the direction of the light ray has.
From a more general viewpoint, we consider the metric

c2t′2 − r′2 = (ct′)2 − (x′2 + y′2 + z′2) = (ct)2 − (x2 + y2 + z2) = c2t2 − r2

By some calculation. So this quantity is preserved.
Consider the case where there is only one spacial dimension x in an inertial
frame S with time t. Conventionally we plot x in the horizontal axis and ct in
the vertical direction. The trajectory of a particle in space-time then is a curve
in the plane. We call this the Minkowski space-time, where each point (x, ct)
in the space-time represents an event. We call the curve that represents the
motion of some particle a world line. In particular, the world line is straight
iff the particle moves in uniform velocity. Light rays through the origin then
travels in vertical lines of the form x = ±ct, which are the vertical lines that
has a inclination of π/4 to either axis. As a particle is not allowed to move
with velocity greater than the speed of light, its motion (assuming that it goes
through the origin) is restricted to the upper and lower cones that are split by
the lines x = ±ct.
How about viewing from another inertial frame S′? The t′ axis corresponds to
x′ = 0, so it corresponds to x = vt = (v/c)ct, and the x′ axis is t′ = 0, hence
the axis is ct = (v/c)x. Thus the axes moves by the same degree closer to the
diagonal (where the light ray travels) if v ≥ 0 and further from the diagonla
otherwise. This is consistent with the postulate that the speed of light doesn’t
change across the frames.

8.2 Relativistic Physics

Consider two events P1 = (x1, t1), P2 = (x2, t2) that are points in the frame S in
one-dimensional Minkowski space-time. They are called simultaneous if t1 = t2.
So the line P1P2 is then parallel to the x-axis. This is called the line of si-
multaneity in S. But in S′, assuming v ̸= 0, P1, P2 are no longer in a line of
simultaneity in S′ (which is of the form t−vx/c2 = d where d is a constant). In
particular, if x1 < x2, then in S′ the event P2 occurs first (with v > 0). Hence
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in general the simultaneity is frame-dependent.
The question of causality then arises, as different observers in different frames
see different orders of events. So we want to see a consistent ordering of cause
and effect. Note that the lines of simultaneity in S′ viewed in S cannot incline
more than π/4 since |v| < c. In higher dimensions, lines and surfaces emerging
from an event P with π/4 inclination to the axes forms the light cones, the past
light cone and the future light cone (depending on signs). All observes agree
that the event Q occurs after P if Q is in the future light cone, but whether
or not the event R, not in the light cones, occurs after P is frame dependent.
The fact that R is outside of the light cone of P then implies that R cannot
be influenced by P , and vice versa, since matters cannot travel faster than the
speed of light (which is the boundary of the light cone). In general, an event
can only be influenced by events in its past light cone and influence events in
its future light cone. So causality does preserve.
Now consider a clock stationary in S′ and tips in constant intervals δt′. We want
to know what time interval is perceived by observers in S. Recall the inverse
Lorentz transformation gives t = γ(t′ + x′v/c2), but x′ is constant since the
clock is stationary in S′. So δt = γδt′, so moving clocks are slower in moving
frames. This is called time dilation. We say the time observed in the rest frame
of a particular object the proper time.
Consider two twins, Luke and Leia. Luke is staying home and Leia is going to
a far planet and return home with speed v relative to Luke. In Luke’s frame of
reference, take the origin to be home. Suppose the planet is at x = P and Leia
arrives at the planet at time cT . Time experienced by Leia in this part of the
journey is then

T ′ = γ(T − v

c2
vT ) =

T

γ

Same for going back. So during the entire journey, Leia aged 2T/γ while Luke
aged 2T , so Leia becomes younger than Luke. From Leia’s perspective, Luke
travels away from her and returns, so if the problem is symmetric, then Luke
should be younger, which is a contradiction. So the paradox is the lack of
symmetries in this problem. Let X be the intersection point between the
line of simultaneity in Leia’s outward frame through P , so at A, we have
x = 0, t = T, t′ = T/γ and X has x = 0, t′ = T/γ, so the time experienced
by Leia would be t = T/γ2 in Luke’s frame at A. As for the return journey, the
line of simultaneity changes sign. So in the return journey, Luke sees Leia aging
from A to R and Leia sees Luke aging from Z to R (where Z is the event with
x = 0 that is simultaneous with A in the frame of Leia on her return journey).
The reason for the paradox is the discontinuity of time (from X to Z) when
Leia changes direction, so Luke has aged instaneously from X to Z.
Now we shall talk about length contraction. Consider a rod of length L′ sta-
tionary in S′, we want to know about the length of the rod in S. Suppose the
ends of the rod are at x′ = 0 and x′ = L′, so the world lines of the ends are
simply the two vertical lines described by these equations. So x′ = 0 mapsto
γ(x−vt) = 0 in S and x′ = L′ mapsto γ(x−vt) = L′, so these two lines are still
parallel but the horizontal (in S) distance between them are now L = L′/γ, so
moving objects are contracted in the direction in which they move. We define
the proper length to be the length measured in the rest frame of the rod, which
is essentially the greatest length of it over all frames.
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A practical problem is that does a train of proper length 2L fits in a platform of
proper length L if it travels at a certain speed. So we want γ = 2. Now for the
observers at the platform, this would work if the train attains the desired speed.
As for the observers on the train, the platform contracts to length L/γ = L/2
so it doesn’t fit. Suppose the platform is defined by x = 0 and x = L. The
train is defined by x′ = 0 and x′ = 2L, which are mapped to some slanted
lines in S, the frame of the platform. Consider the event E where the rear of
the platform and the rear of the train coincide. For simplicity, this happens at
t = t′ = 0. Now the front of the train is x′ = 2L and the platform is x = L.
Let F be the event which is simultaneous with E in S at the front of the train,
so x′ = γ(x− vt), 2L = γ(L− vt) which implies t = 0, so in the platform, E is
simultaneous with F , but in the train S′, we have t′ < 0 by calculation. So in
the train F occurs before E in S′.
Now that both length and time become different in different frames, what about
velocities? Suppose we have a particle moving with constant velocity u′ in S′

which moves with constant velocity v relative to S. We want to know the ve-
locity u of the particle as measured in S. The world line of the particle in S′

can be taken as x′ = u′t′, so we have γ(x − vt) = u′γ(t − vx/c2) which gives
u = (u′ + v)/(1 + u′v/c2). In particular, if u′, v << c, then u ≈ u′ + v which is
the standard Galilean transformation. Note also that we still cannot get to the
speed of light given u′, v < c which is a combination of successive boosts.

8.3 The Geometry of Space-time

Definition 8.1. Consider two points P,Q in space-time having coordinates
(x1, ct1), (x2, ct2), so δt = t2 − t1 and the space seperation is δx = x2 − x1. We
define the invariant interval between P,Q to be δs2 = c2δt2 − δx2.

Note that as we observed before, one can show that all observers agree on
the value of δs2.

Definition 8.2. If we have three spacial dimensions (x, y, z), we define δs2 =
c2δt2 − δx2 − δy2 − δz2.

If the seperation between P,Q becomes small, then ds2 = c2 dt2 − (dx2 +
dy2 + dz2) which looks like a distance (no it doesn’t). We can (no we can’t)
say that space-time is topologically equivalent to R4 endowed by the distance
measure δs, but note that this is not even positive definite. The space-time
endowed with this “measure of distance” is called the Minkowski space-time.

Definition 8.3. Two events having δs2 < 0 are said to be time-like seperated,
and two that have δs2 < 0 are said to be space-like seperated.

So two time-like seperated events are at the same space position in some
frame of reference and space-like seperated events are at the same time position
in some frame.

Definition 8.4. if δs2 = 0, we say P,Q are light-like seperated, so they can be
connected by a light ray.

Note also that events that are light-like seperated may not be the same.

Definition 8.5. Take event P in S, we can write its coordinates as a 4-vector
Xµ = (ct, x, y, z), µ = 0, 1, 2, 3, so X0 = ct etc..
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We can define a new “inner product” on 4-vectors by X · Y = X⊤ηX =
XµηµνX

ν where

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


So we have X · X = c2t2 − x2 − y2 − z2. We call this the Minkowski metric.
4-vectors with X ·X > 0 are time-like, those with X ·X < 0 are space-like and
those with X ·X = 0 are light-like (or null). The Lorentz transformation is a
lineaR transformation that takes the components of a 4-vector in S to those of
a 4-vector in S′. Hence we can write it as a matrix Λ where X ′ = ΛX. The
set of all Λ that preserves the Minkowski metric then forms a group, called the
Lorentz group. I.e. we want X · X = (ΛX) · (ΛX) for all 4-vector X. By
substitution we have Λ⊤ηΛ = η.
If Λ is just a spacial transformation, i.e.

Λ =


1 0 0 0
0
0 R
0


So R must be a rotation. If it is not the case, we can also have the boost (WLOG
in the x-direction)

Λ =


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1

 , β =
v

c

The Lorentz group O(1, 3) also consists of spacial reflections and time rever-
sals. And its subgroup SO(1, 3) with determinant 1 is called the proper Lorentz
group. This includes composition of time reversals and spacial reflections. The
subgroup that preserves the direction of time and spacial orientation is called
the restrictive Lorentz group SO+(1, 3), which is generated by spacial rotations
and boosts (in all directions).
A way to label the Lorentz transformations is by a concept of rapidity. We
now focus on the (ct, x) space (i.e. the 2 × 2 submatrix on the top left corner
operating on (ct, x)), where we define

Λ[β] =

(
γ −γβ

−γβ γ

)
So if we combine two boosts in the x direction, then we have Λ[β1]Λ[β2] =
Λ[(β1 + β2)/(1 + β1β2)] with appropriate values of γ’s. Recall that for spacial
rotations, we have R(θ1 + θ2) = R(θ1)R(θ2). For Lorentz boosts, we define the
rapidity ϕ by β = tanhϕ, so γ = coshϕ and γβ = sinhϕ. Hence

Λ[ϕ] =

(
coshϕ − sinhϕ
− sinhϕ coshϕ

)
and thus Λ[ϕ1]Λ[ϕ2] = Λ[ϕ1 + ϕ2]. This suggests that Lorentz transformations
are hyperbolic rotations of space-time.
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8.4 Relativistic Kinematics

Consider a particle moving along some trajectory x(t), then u(t) = dx/dt, so
the path of it in space-time is parameterized by t. But in special relativity
the dependent variable t is also going to change, so the path of it in a new
frame would be non-trivial. Consider a particle at rest in S′, so x = x0 in
S′, so the invariant interval would be δs2 = c2δt′2. Define the proper time as
the time τ with c2δτ2 = δs2, so δτ is the time experienced by the particle.
Due to invariance, this equation holds in all frame, and τ is real in time-like
intervals. So the world line of a particle can be parameterized by τ . In terms
of an infinitesimal interval, if u is the speed of the particle, we have

dτ =
ds

c
=

1

c

√
c2 dt2 − dx2 =

√
1− |u|2

c2
dt

Hence dt/dτ = γu where γu = 1/
√

1− u2/c2. The total time experienced by
the particle is then

T =

∫
dτ =

∫
dt

γu

To study this, we introduce the concept of a 4-velocity. The position 4-vector
of a particle is the column vector X(τ) = (ct(τ), x(τ))⊤ where x is a 3-vector.

Definition 8.6. The 4-velocity is

U =
dX

dτ
=

(
cdt/dτ
dx/dτ

)
= γu

(
c
u

)
, u =

dx

dt

If I have two frames S, S′ such that the components of X,X ′ of the position
vector are related by X ′ = ΛX, then U ′ = ΛU . In general, everything that
transforms in this way is called a 4-vector. And in particular, U is a 4-vector
since X is and τ is invariant. Note that dX/dt is however not a 4-vector. The
scalar product U · U will hence be Lorentz invariant. That is, U · U = U ′ · U ′.
In the rest frame where the particle with 4-velocity U , then U = (c, 0)⊤, so
U ·U = c2, so for any u, we have c2 = γ2

u(c
2 − |u|2). We have seen that the rule

of transformation of velocity in special relativity is not as simple as in Galilean
transformations. However, we do have a fairly simple transformation law for
4-vectors, which we can apply to 4-velocity, which gives U ′ = ΛU .

Example 8.1. In a frame S where our favourite particle is moving with a
speed u at an angle θ to the x-axis in the x − y plane. Its 4-velocity is then
U = γu(c, u cos θ, u sin θ, 0)

⊤. Consider another frame S′ which moves with
speed v in the x direction of S. Suppose the velocity in S is u′ and it makes an
angle θ′ to the x-direction in S′. So U ′ = γu′(c, u′ cos θ′, u′ sin θ′, 0) with

U ′ =


γv −γvβv 0 0

−γvβv γv 0 0
0 0 1 0
0 0 0 1

U

which we can solve to get θ′, u′ in terms of other things.

u′ cos θ′ =
u cos θ − v

1− uv cos θ/c2
, tan θ′ =

u sin θ

γv(u cos θ − v)
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This change in angle, i.e. apparent change of direction, of the motion of the
particle due to the motion of the observer is called an aberation. This also
applied with the particle is a photon, so u = c, so although the speed of light
cannot change across inertial frames, the direction of light ray can.

We also want to talk about 4-momentum. The 4-momentum of a particle
of mass m moving with 4-velocity u is given by P = mU = mγu(c, u)

⊤ with
components µ = 0, 1, 2, 3 where the component µ = 0 is interpreted as time. For
P to be a 4-vector, m must be an invariant, so we must take m to be the rest
mass of the particle. The 4-momentum of a system of particles is the sum of
the individual particles which conserves in the absence of external forces. The
spacial components of P corresponds to the relativistic 3-momentum p = γumu
which is the same as the Newtonian expression except that mass is modified
to γum, which is interpreted as the apparent mass of the moving particle. In
particular, when |u| → c, the apparent mass tends to infinity. For the zero
component,

P 0 = γumc =
1

c

(
mc2 +

1

2
m|u|2 + · · ·

)
We see the kinetic energy in the second term, so the natural interpretation of
P is P = (E/c, p) where E is called the relativistic energy, so E = γumc2 =

mc2+m|u|2/2+ · · · and P is sometimes called the energy-momentum 4-vector.
Note that E → ∞ as |u| → c. So for a stationary particle, we have E = mc2,
and for a moving particle we have E = mc2+(γu−1)mc2 where the second term
is the kinetic energy, which reduces to the Newtonian kinetic energy for small u.
Now P ·P = E2/c2 − |p|2 is conserved under Lorentz transformation and hence

equals to m2c2, so we have E2 = |p|2c2+m2c4. In Newtonian physics, mass and
energy are seperated idea in the sense that they are seperately conserved. But
in relativity, mass is not conserved and is a form of energy, i.e. we can convert
mass into kinetic energy and vice versa.
Consider a massless particles (i.e. particles with zero rest mass) like a photon.
It can have non-zero (4-)momentum and hence nonzero relativistic energy. Sup-
pose this particle has the speed of light, then 0 = m2c2 = P · P = E2/c2 − |p|2.
We say this particle is light-like and it travels through a light-like trajectory.
Consequently, there is no proper time for this particle. Note that in this case
E = c|p|, so

P =
E

c

(
1
n

)
where n is a unit vector. In special relativity, we can write Newton’s Law as

dP

dτ
= F

where F is the 4-force, i.e.

F = γu

(
F · u/c

F

)
which is also a 4-vector. Note that if we transform from proper time to time ex-
perienced, then Newton’s Second Law pops up, so it is consistent. Equivalently,
for a particle with rest mass m, then one can write F = mA where A = dU/dτ
is the 4-acceleration.

37



8.5 Examples in Particle Physics

We want to explore the use of the conservation of total 4-momentum in problems
in particle physics. Consider P = (E/c, p)⊤ for a system of particles. A useful
way to consider the system is to introduce the notion of a center-of-momentum
frame (CM frame), which is the frame where the total 4-momentum is 0 (possible
whenever all particles have positive rest mass).

Example 8.2. Particle decay. Consider a particle of mass m1 with momentum
P1 which is deemed to decay into two particles of mass m2,m3 and momenta
P2, P3 respectively. So we have P1 = P2 + P3. Consider the zero component,
then E1 = E2+E3. Consider the spacial components gives p1 = p2+ p3. In the
CM frame, P1 = 0, therefore P2 = −P3. Also

m1c = E1/c = E2/c+ E3/c =
√

|p2|2 +m2
2c

2 +
√

|p3|2 +m2
3c

2 ≥ (m2 +m3)c

So this decay is possible only if m1 ≥ m2 +m3. Note that is possible that we
don’t have the equality (unlike in Newtonian mechanics) where some mass has
been converted to energy.

Example 8.3. A Higgs particle h is decayed into two photons γ, then Ph =
Pγ1 + Pγ2 , then in the rest frame of h, Ph = (mhc, 0). So if we look at the
spacial components, then 0 = Pγ1

+ Pγ2
. And since the photons have zero rest

mass,
Eγ1

c
= |pγ1

| = |pγ2
| = Eγ2

c

So each of the photons has half of the Higgs particle’s total energy. Note that
in this case mass does not conserve.

Example 8.4. Consider two identical particles which collide and retain their
identities. Let P1, P2 be the 4-momenta before and P3, P4 after respectively.
Suppose S is the laboratory frame where p2 = 0, let the horizontal to be the
line joining the two particles and let θ be the inclination of particle 1 after the
collision and ϕ be that of particle 2. We want to study the relationship between
θ and ϕ.
Now we go to the CM frame where the particles are horizontal before the col-
lision, then the trajectories form two lines crossing each other. Let θ′ be the
angle between those two lines. Let v be the speeds before the collision and w
be that after. We put a ′ to indicate we are in the CM frame. Then

P ′
1 =


mγvc
mγvv
0
0

 , P ′
2 =


mγvc
−mγvv

0
0


and

P ′
3 =


mγwc

mγww cos θ′

mγww sin θ′

0

 , P ′
4 =


mγwc

−mγww cos θ′

−mγww sin θ′

0
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The first component gives v = w. Now we apply the Lorentz transformation
from the CM frame S′ back to S. The velocity of the transformation is v, so

Λ =


γv γvv/c 0 0

γvv/c γv 0 0
0 0 1 0
0 0 0 1


Now before the collision,

P1 =


mγ2

v(c+ v2/c)
mγ2

v(v + v)
0
0

 =

(
mγuc
mγuu

)

where u is the initial velocity of particle 1. Consider the situation after the
collision and set q to be the velocity of particle 1 after the collision, we get

P3 =


mγ2

v(c+ (v2/c) cos θ′)
mγ2

v(v + v cos θ′)
mγvv sin θ

′

0

 =


mγqc

mγqq cos θ
mγqq sin θ

0


So by comparing the 1 and 2 components, we get

tan θ =
mγv
mγ2

v

v sin θ′

v(1 + cos θ′)
=

1

γv
tan

θ′

2

Similarly,

tanϕ =
1

γv
cot

θ′

2

So tan θ tanϕ = 1/γ2
v = 2/(1+γu). When γu → 1 (i.e. in the Newtonian limit),

we get tan θ tanϕ = 1, so the angle after the collision would be π/2.
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