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0 Basic Calculus

Definition 0.1. Let f : U → R where U ⊂ R, then if ∀ε > 0,∃δ > 0 such that

|x− x0| < δ =⇒ |f(x)−A| < ε

for some x0, A ∈ R, we say
lim
x→x0

f(x) = A

Theorem 0.1. Assume that

lim
x→x0

f(x) = A, lim
x→x0

f(x) = B

Then the followings hold:
lim
x→x0

cf(x) = cA

lim
x→x0

f(x) + g(x) = A+B

lim
x→x0

f(x)g(x) = AB

B 6= 0 =⇒ lim
x→x0

f(x)/g(x) = A/B

Proof. Check definitions.

2



Definition 0.2 (One-sided limits). If ∀ε > 0,∃δ > 0 such that 0 < x − x0 <
δ =⇒ |f(x)−A| < ε for some x0, A ∈ R, we say

lim
x→x+

0

f(x) = A

Simialrly, if it is 0 < x0 − x < δ =⇒ |f(x)−A| < ε, then

lim
x→x−

0

f(x) = A

Definition 0.3. If the limit

lim
h→0

f(x+ h)− f(x)

h

exists for all x in a given domain, we say that f is differentiable in this domain
and its derivative is

f ′(x) =
df

dx
= lim
h→0

f(x+ h)− f(x)

h

For sufficiently smooth functions, we can differentiate it recursively. We
denote the nth derivative of f as

dnf

dxn
or f (n)(x)

Several immediate facts are available from here:

Theorem 0.2. 1. The differential operator is linear.
2. (Chain Rule) Suppose both F and g are differentiable and f(x) = F (g(x)),
then f is differentiable and f ′(x) = F ′(g(x))g′(x).
3. (Leibniz’s Rule) Suppose both u and v are differentiable and f(x) = u(x)v(x),
then

f (n)(x) =

n∑
k=0

(
n

k

)
u(k)(x)v(n−k)(x)

in particular f ′(x) = u(x)v′(x) + u′(x)v(x).

Proof. Trivial.

1 Order of Magnitude and Taylor’s Theorem

1.1 Asymptopic Behaviour

When we want to analyze the difference between functions, apart from their
analytical properties, we would also be interested in the difference between their
magnitudes. The following notion arrives to serve this purpose

Definition 1.1 (Little-o notation). Let f, g be real functions and x0 ∈ R̄ =
R ∪ {±∞}, we say that f(x) = o(g(x)) as x→ x0 if

lim
x→x0

f(x)

g(x)
= 0
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Definition 1.2 (Big-O notation). Let f, g be real functions and x0 ∈ R, we say
that f(x) = O(g(x)) as x→ x0 if ∃δ,M > 0 such that

|x− x0| < δ =⇒ |f(x)| ≤M |g(x)|

We say f(x) = O(g(x)) as x→∞ if ∃x1,M > 0 such that

x > x1 =⇒ |f(x)| ≤M |g(x)|

We say f(x) = O(g(x)) as x→ −∞ if ∃x1 < 0,M > 0 such that

x < x1 =⇒ |f(x)| ≤M |g(x)|

Remark. Remember that the equality sign of f(x) = o(g(x)) or f(x) = O(g(x))
is not really the usual equality sign we use. It is more like f(x) ∈ o(g(x)) or
f(x) ∈ O(g(x)), meaning that f is one of those functions having this property
on its magnitude. The reason why we use the equality sign here is that we
sometimes use the notations to denote some functions having this property,
which we do not (need to) know any detail except its magnitude.

Example 1.1. We have x2 = o(x) as x→ 0 and x2 = O(x) as x→ 0. In fact,
whenever f(x) = o(g(x)) as x→ x0 we have f(x) = O(g(x)) as x→ x0 as well.
The proof again is just checking definitions.

Now, one of the most significant usage of the measurement of magnitude is
that we can use it to approximate the rest of the terms in a series. For example,
if we take the series 1+x+x2+x3+. . ., we can replace it by 1+x+x2+x3+o(x3),
in which way one can include information about the magnitude of the error term
of the series.

1.2 Taylor Series

The idea of the Taylor series is to locally approximate a smooth enough func-
tion by polynomials. Surely, most functions have much worse analytical prop-
erties then polynomials, making it slightly problematic to analyze some of
their properties. Taylor series provides a solution. Basically, we start by as-
suming a local approximation of the function by a polynomial. Say f(x) ≈
a0 + a1x+ a2x

2 + · · ·+ anx
n, then, by differentiating both sides recursively, we

immediately have an = f (n)(0)/n!. The polynomial, which we will call Pn,0(x),
is called the Taylor polynomial. In general, if we shift the polynomial by x0, we
have the general form:

Definition 1.3. The Taylor polynomial Pn,x0
(x) of a function f around a point

x0 is the polynomial
n∑
k=0

f (k)(x0)(x− x0)k

k!

Now the big question is, we have (quite vaguely) obtained the form of the
sequence of polynomials that looks as if it can approximate f as n is big enough.
But does it? Obviously unless f is a polynomial as well it has no chance that
the polynomial will be equal to f , but what can we say about the magnitude of
the error term? Taylor’s theorem saves the day.
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Theorem 1.1 (Taylor’s theorem). Write h = x − x0. Provided that f (n+1)

exists, then
En,x0

(x) = f(x)− Pn,x0
(x) = O(hn+1)

as h→ 0.

Actually En,x0
= o(hn) as h→ 0 as well but the big-O here is stronger.

1.3 L’Hopital’s Rule

Theorem 1.2. If f(x) and g(x) are both differentiable at x = x0 ∈ R̄, and that
f, g are both continuous at x0 and f(x0) = g(x0) = 0, then

lim
x→x0

f(x)

g(x)
= lim
x→x0

f ′(x)

g′(x)

Proof. The little-o notations below are taken as x→ x0.

f(x) = f(x0)+(x−x0)f ′(x0)+o(x−x0), g(x) = g(x0)+(x−x0)g′(x0)+o(x−x0)

by Taylor’s theorem.

f(x)

g(x)
=
f ′(x0) + o(x− x0)/(x− x0)

g′(x0) + o(x− x0)/(x− x0)
→ f ′(x0)

g′(x0)

as x→ x0.

Note that we can use L’Hopital’s rule recursively given that the conditions
still hold.

2 Fundamental Theorem of Calculus

2.1 Integration

Assume below that all functions under consideration are nice enough to let the
integral exist.
Consider the following sum

N−1∑
n=0

f(xn)∆x

where ∆x = (b− a)/N, xn = a+ n∆x.
The question is, how close is the finite sum above to the area under the curve
of f , when N is large? How big is the difference between the difference between
the area and the discrete area in the sum?

Theorem 2.1 (Mean-vaue Theorem on Definite Integrals). For a continuous
function f(x), ∫ xn+1

xn

f(x) dx = f(xc)(xn+1 − xn)

for some xc ∈ (xn, xn+1).
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Expand f(x) about x→ xn and evaluate it at xc. As ∆x→ 0,

f(xc) = f(xn) +O(xc − xn) = f(xn) +O(xn+1 − xn)

as |xc − xn| < |xn+1 − xn|. Hence by the mean-value theorem:∫ xn+1

xn

f(x) dx = f(xn)(xn+1 − xn) +O(xn+1 − xn)(xn+1 − xn)

= ∆xf(xn) +O(∆x2)

So ε = O(∆x2). It follows that∫ b

a

f(x) dx = lim
N→∞

N−1∑
n=0

f(xn)∆x+ εn

By our bounds above, the error terms
∑
n εn = O(N∆x2) = O((b − a)2/N)

vanish as N →∞. Therefore,∫ b

a

f(x) dx = lim
N→∞

N−1∑
n=0

f(xn)∆x

Theorem 2.2 (Fundamental Theorem of Calculus). Let

F (x) =

∫ x

a

f(t) dt

then dF/dx = f(x).

Proof. We try to evaluate the derivative of F ,

dF

dx
= lim
h→0

1

h

∫ x+h

x

f(t) dt

= lim
h→0

1

h
(f(x)h+O(h2))

= f(x)

So dF/dx = f(x).

Corollary 2.3.
d

dx

∫ b

x

f(t) dt = −f(x)

Corollary 2.4. ∫ g(x)

a

f(t) dt = f(g(x))g′(x)

Corollary 2.5. Let

F (x) =

∫
f(x) dx

be the indefinite integral (or anti-derivative) of f , then∫ b

a

f(t) dt = F (b)− F (a)
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2.2 Some Integration Techniques

The first one is integration by substitution.

Example 2.1. ∫
1− 2x√
x− x2

dx =

∫
du√
u

= 2
√
u+ C

Trigonometric substitution

Example 2.2. If we see something like
√
a2 − x2, then we can substitute x =

a sin θ.
If we see something like x2 + a2, we can use x = a tan θ.
If we see

√
x2 − a2, we can use x = a cosh θ or x = a sec θ.

If we see
√
x2 + a2, we can use x = a sinh θ or x = a tan θ.

If we see a2 − x2, we can use x = a tanh θ

And, of course, we have integration by part:∫
uv′ = uv −

∫
u′v

from product rule.

3 Multivariate Calculus

In many real world applications, functions we might be interested in can involve
more than one independent variable.

Example 3.1. Waves along a string. Let f(x, t) be the displacement where
x be the position and t be the time. The shape of the wave (represented by
f(x, t0) where t0 is fixed) is dependent on time.

How do we define the derivative when a function depends on more than one
variable? Suppose that f(x, y) is the elevation of the terrain at the specific
location x, y. We can draw a contour map of its projection on a plane. If we
are interested in the steepness at a point a on the surface, one should note that
different trails going though a may have different steepness. So the general point
is that the slope of a function at a given point depends on the direction.

3.1 Partial Derivative

We want to find the derivative of a multivariate function with respect to one
variable while keeping others fixed.

Definition 3.1. Mathematically speaking, we define partial derivative f(x, y)
with respect to x fixing y is the limit

∂f

∂x

∣∣∣∣
y

= lim
h→0

f(x+ h, y)− f(x, y)

h

provided that it exists. We can define the partial derivative with respect to y
fixing x similarly.
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Example 3.2. Let F (x, y) = x2 + y3 + exy
2

, so

∂f

∂x

∣∣∣∣
y

= 2x+ y2exy
2

,
∂f

∂y

∣∣∣∣
x

= 3y2 + 2xyexy
2

We can do partial derivatives recursively as well.

∂2f

∂x2

∣∣∣∣
y

= 2 + y4exy
2

Now we can define cross-derivative as well,

∂

∂y

(
∂f

∂x

∣∣∣∣
y

)∣∣∣∣∣
x

= 2yexy
2

+ 2xy3exy
2

Since the notation is cumbersome, we sometimes omit the symbol |y.
There is a symmetry involved in mixed partial derivatives. By that we mean

∂2f

∂x∂y
=

∂2f

∂y∂x

given that all these partial derivatives exist. Some properties are required for
this equality to hold, but they are out of the scope of this course.
On higher dimensions (where we can define partial derivatives analogously), for
example f(x, y, z), when we sometimes say

∂f

∂x

∣∣∣∣
y

its value would depend on the path it takes in the x− z plane.
We sometimes use the shorthand notation fx, fxy, fxx for the partial derivatives.

3.2 The Chain Rule on Higher Dimensions

Consider f(x(t), y(t)), we first want to have the concept of a differential of a
function.

δf = f(x+ δx, y + δy)− f(x, y)

So we have

δf = f(x+ δx, y + δy)− f(x+ δx, y) + f(x+ δx, y)− f(x, y)

When y is held constant, f(x + δx, y) = f(x, y) + δx(∂f/∂x)(x, y) + o(δx) as
δx→ 0. Similarly f(x+ δx, y+ δy) = f(x, y) + δy(∂f/∂y)(x+ δx, y) + o(δy) as
δy → 0. Therefore as δx→ 0, δy → 0

δf = f(x+ δx, y) + δy
∂f

∂y
(x+ δx, y) + o(δy)− f(x+ δx, y)

+ f(x, y) + δx
∂f

∂x
(x, y) + o(δx)− f(x, y)

= δy
∂f

∂y
(x+ δx, y) + δx

∂f

∂x
(x, y) + o(δx) + o(δy)

= δy
∂f

∂y
(x, y) + δx

∂f

∂x
(x, y)

+ δxδy
∂

∂x

∂f

∂y
(x, y) + o(δx) + o(δy) + o(δxδy)
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Note that o(δxδy) + o(δx) = o(δx) as δy → 0, so we can ignore that term.
We let δx, δy → 0, so

δf = δy
∂f

∂y
+ δx

∂f

∂x
+ δxδy

∂

∂x

∂f

∂y
+ o(δx) + o(δy)

df =
∂f

∂y
dy +

∂f

∂x
dx

This is called the chain rule in differential form. We can obtain the chain rule
by dividing by another differential dt before applying the limit.

df

dt
=
∂f

∂y

dy

dt
+
∂f

∂x

dx

dt

This is called the multivariate chain rule.
Suppose f(x, y(x)), then

df

dx
=
∂f

∂x
+
∂f

∂y

dy

dx

We can integrate it back ∫
df =

∫
∂f

∂x
dx+

∫
∂f

∂y
dy

Note that we need to integrate the above equation along a given path, but if
the function is nice enough, only the endpoints matter.

Example 3.3. We choose the paths

(x1, y1)→ (x2, y1)→ (x2, y2)

and
(x1, y1)→ (x1, y2)→ (x2, y2)

then

f(x2, y2)− f(x1, y1) =

∫ x2

x1

∂f

∂x
(x, y1) dx+

∫ y2

y1

∂f

∂y
(x2, y) dy

=

∫ x2

x1

∂f

∂x
(x, y2) dx+

∫ y2

y1

∂f

∂y
(x1, y) dy

An application of the multivariate chain rule is the change of variables. It
is often useful to write a differential equation in a different coordinate system
before solving it. To do this, we need to transform the derivatives from one to
the other.

Example 3.4. We try to transform from Cartesian to polar coordinate, so
x = r cos θ, y = r sin θ, so we can write f(x(r, θ), y(r, θ)), so

∂f

∂r

∣∣∣∣
θ

=
∂f

∂x

∣∣∣∣
y

∂x

∂r

∣∣∣∣
θ

+
∂f

∂y

∣∣∣∣
x

∂y

∂r

∣∣∣∣
θ

=
∂f

∂x

∣∣∣∣
y

cos θ +
∂f

∂y

∣∣∣∣
x

sin θ

We can also apply it to implicit differentiation. Consider f(x, y, z) = c where
c is a constant. It implicitly defined z(x, y), x(y, z), y(z, x). For example, we can
take xy+ y2z + z5 = 1, so x = (1− z5 − y2z)/y and we can find y by quadratic
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formula, but we cannot do it easily with z since it’s quintic.
However, we can find the derivative ∂z/∂x fixing y by observing

0 =
∂f

∂x

∣∣∣∣
y

= y + y2
∂z

∂x

∣∣∣∣
y

+ 5z4
∂z

∂x

∣∣∣∣
y

which we can solve for the desired derivative.
Now consider f(x, y, z(x, y)) = 0,

df =
∂f

∂x

∣∣∣∣
y,z

dx+
∂f

∂y

∣∣∣∣
x,z

dy +
∂f

∂z

∣∣∣∣
x,y

dz

We want the derivative of z wrt x with y fixed, so

∂f

∂x

∣∣∣∣
y

=
∂f

∂x

∣∣∣∣
y,z

+
∂f

∂z

∣∣∣∣
x,y

∂z

∂x

∣∣∣∣
y

In fact, (∂f/∂x)|y = 0.
The chain rule allows us to differentiate an integral. Consider function f(x, c)
where each value of c gives a different function f . We want to find the (partial)
derivative of the integral ∫ b

0

f(x, c) dx

Then

∂I(b, c)

∂b

∣∣∣∣
c

= lim
h→0

1

h

∫ b+h

b

f(x, c) dx

= f(b, c)

Similarly,

∂I(b, c)

∂c

∣∣∣∣
b

= lim
h→0

1

h

∫ b

0

f(x, c+ h)− f(x, c) dx

=

∫ b

0

∂I(x, c)

∂c

∣∣∣∣
x

dx

Suppose that b, c depends on t, so I(b(t), c(t)), so

dI

dt
=
∂I

∂b

db

dt
+
∂I

∂c

dc

dt

= f(b, c)ḃ+ ċ

∫ b

0

∂I(x, c)

∂c

∣∣∣∣
x

dx

In general,

d

dt

∫ b(t)

a(t)

f(x, c(t)) dx = ċ

∫ b(t)

a(t)

∂f

∂c
dx+ f(b, c)ḃ− f(a, c)ȧ

Note that the reciprocal rule also apply. The same rule applies to partial deriva-
tives given that the same parameter is kept constant.

∂r

∂x

∣∣∣∣
y

=
1

∂x/∂r|y
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4 First-Order ODEs

Definition 4.1. An Ordinary Differential Equation (ODE) involves differen-
tiable functions of 1 variable, while Partial Differential Equations (PDEs) in-
volve higher dimensional functions.
The order of a differential equations is the highest order of derivative in the
equation.

4.1 First-Order Linear ODEs

An linear ODE is, obviously, a linear ODE.

Example 4.1. x3y + y′ = 0 is a first-order linear ODE.

4.1.1 Prelude: Exponential Function

Consider the function f(x) = ax, a > 1, then f ′(x) = axλ for some λ > 0.

Definition 4.2. We define exp(x) to be the solution to the differential equation
f ′ = f with f(0) = 1.

By definition we have (eh − 1)/h→ 1 as h→ 0.

Definition 4.3. One can show that exp is strictly increasing, therefore injective.
So we can define ln to be the inverse function of exp.

So we have λ = ln a.
The exponential function plays a central role in differential equations because
it is the eigenfunction (i.e. a function that is only scaled under the operator) of
the differential operator.
We obviously have deλx/dx = λeλx, so it is indeed an eigenfunction. Actually,
all the eigenfunctions of the differential operator is of the form Ceλx for some
constant C and λ. So the behaviour of a differential equation can be somehow
characterized by exponential functions.

4.1.2 Rules of Linear ODEs

Firstly, any homogeneous linear ODEs with constant coefficients (e.g. af ′+bf =
0, a, b ∈ R) have solutions of the form Ceλx where λ can be complex.
Secondly, for linear homogeneous ODEs, any contant multiple of a solution is
also a solution.
Thirdly, an nth order linear ODE has only n linearly independent solutions.
Lastly, an nth order ODE requires n initial/boundary conditions to uniquely
determine it.

4.1.3 Forced (inhomogeneous) First Order ODEs with Constant Co-
efficient

Case 1: Constant forcing. For example, 5y′ − 3y = 10. We will follow the
following steps:
1. Find steady (equilibrium) solution where y′ = 0. In this case, it is y = yp =
−10/3.

11



2. Then, the general solution is in the form y = yp + yc where yc is a comple-
mentary solution, any solution to the differential equation removing the inho-
mogeneous part. in this case, 5y′ − 3y = 0.
3. Solve for yc. In this case, yc = Ae3x/5

4. Plug it back: y = Ae3x/5 − 10/3
Here A is any constant. This way works since linearity of the equation granted
that any two solutions to it must differ by a complementary solution.
Case 2: Eigenfunction forcing.
Suppose an isotope A decays into isotope B in a way that it is proportional to
a, the number of nuclei of that isotope A. While B decays into isotope C, its
rate is proportional to b, the numbers of nuclei of isotope B. So ȧ = −kaa =⇒
a = a0e

−kat for some constants ka, a0. Now ḃ = −kbb + kaa for some constant
kb, so

ḃ+ kbb = kaa0e
−kat

This is an example where the forcing term is the eigenfunction of d/dt. We can
guess a particular solution

bp =
ka

kb − ka
e−kat

if kb 6= ka. So the general solution is

b =
ka

kb − ka
a0e
−kat +De−kbt

If b(t) = 0, then

b =
ka

kb − ka
a0(e−kat − e−kbt)

So
b

a
=

ka
kb − ka

(1− e(ka−kb)t)

we can solve it for t and this solution allows us to date rocks etc by measuring
the ratio of isotopes.

4.1.4 First Order ODEs with Non-constant Coefficient

The general form of these sort of equations are in the form a(x)y′+b(x)y = c(x)
or the form y′ + p(x)y = q(x) (given that ∀x, a(x) 6= 0). We can solve it by
integrating factor

µ(x) = exp

(∫
p dx

)
So

(µy)′ = µq =⇒ µy =

∫
µq dx =⇒ y =

1

µ

∫
µq dx

4.2 Intermezzo: Discrete Equations

Sometimes it is useful to consider functions evaluated at a discrete set of points,
which could be useful to numerical integration and series solution.
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4.2.1 Numerical Integration

One approximation to dy/dx at x = xn can be written as

dy

dx

∣∣∣∣
yn

≈ yn+1 − yn
h

This is called the forward Euler approximation.

Example 4.2. 5y′ − 3y = 0 again. Then it is approximately equal to the
discrete equation

5yn+1 − 5yn − 3nyn = 0 =⇒ yn+1 =

(
1 +

3h

5

)
yn

We can iterate it to approximate the solution given an initial value. This is the
example of a recurrence relation. We can actually solve this by

yn =

(
1 +

3h

5

)n
y0

Which can approximate the true solution pretty well if we let h → 0, n → ∞.
Note that in this case, for finite value of n, yn is always less than the actual
value of solution at that point.

4.2.2 Series Solution

A powerful way to solve DEs is to seek for solutions in the form of an infinite
power series. Let

y(x) =

∞∑
n=0

anx
n

we can plug it in the differential equations to solve for an.

Example 4.3. 5y′ − 3y = 0 yet again. Plug it in and we get

5

∞∑
n=0

(5(n+ 1)an+1 − 3an)xn = 0

Hence

5(n+ 1)an − 3an = 0 =⇒ an+1 =
3an

5n+ 5
=⇒ an =

(
3

5

)n
1

n!
a0

Thus

y(x) =

∞∑
n=0

anx
n = a0

∞∑
n=0

(
3

5

)n
1

n!
xn = a0e

3x/5

for some constant a0.

4.3 Non-linear First Order ODEs

The general form of these sort of equations can be written in the following way:

Q(x, y)
dy

dx
+ P (x, y) = 0

We cannot guarantee that a nonlinear ODE can be solved in closed form. But
sometimes we can.
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4.3.1 Special Types of Non-linear First Order ODEs

An ODE is said to be separable if it can be written in the form q(y)dy = p(x)dx,
then we can solve for it by integrating both sides.
An ODE in the above form is called exact if and only if Q(x, y) dy+ P (x, y) dx
is an exact differential of some function f(x, y), that is df = Qdy + P dx. If it
is the case, our general form then give df = 0, so f(x, y) = 0 is the solution.
To find it, we can make use of the multivariate chain rule to get

∂f

∂x
+
∂f

∂y

dy

dx
= 0

P = fx, Q = fy, hence

∂2f

∂y∂x
=
∂P

∂y
,
∂2f

∂x∂y
=
∂Q

∂x

So Py = Qx. Conversely, if it is true in a simply connected domain, then
P dx+Qdy is an exact differential. Therefore we can use it to test whether the
given ODE is exact. If so, we can find f (hence a possibly implicit expression
of y) back by integration.

Example 4.4. We want to solve 6y(y − x)y′ + (2x − 3y2) = 0. So P = 2x −
3y2, Q = 6y(y − x), we can check that our preceding condition hold (i.e. Py =
Qx), hence it is exact.
To find f(x, y), we notice {

∂f/∂x|y = 2x− 3y2

∂f/∂y|x = 6y(y − x)

Integrating the first equation we have f(x, y) = x2 − 3xy2 + h(y) where h is
differentiable. Now plug it in the other equation we get 6y(y−x) = −6xy+h′(y),
thus h′(y) = 6y2 =⇒ h(y) = 2y3 − C where C is a constant. So the general
solution is

x2 − 3xy2 + 2y3 = C

4.3.2 Isoclines and Solution Curves

Even if (most of the time) we cannot really solve the equation, we can still
analyze its behaviour. Now we consider an ODE of form ẏ = f(y, t), each initial
condition y(t0) = y0 will give a different solution curve (given existence).

Example 4.5. Suppose ẏ = t(1 − y2), of course this is separable and we can
solve it, but without solving this, we can sketch solution curves as well.

Definition 4.4. An isocline is a curve given by ẏ being constant, that is, t(1−
y2) = c for some constant c.

Note that if f(y, t) is single-valued (i.e. actually a function), then the so-
lution curves cannot cross (unless as tangents of each other). To sketch the
solutions, we can first sketch all the Isoclines. Note that along any isocline, the
corresponding ẏ is constant, so we can easily draw the vector field, so we could
follow the directions with initial condition given to approximate the curve.
We can analysis the stability of a fixed point.
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Definition 4.5. A fixed point is a constant solution of y. That is, we have
ẏ = f(y, t) = 0.

Definition 4.6. A fixed point is called stable if the solution curve in a small
neighbourhood of the fixed point converge to it.

We now try to analyze the stability of fixed points using perturbation anal-
ysis.
Let y = a be a fixed point of some DE ẏ = f(y, t). Consider a small perturbation
of the fixed point y = a+ ε(t), so ε̇ = f(a+ ε, t) = f(a, t) + εfy(a, t) +O(ε2), so
ε̇ ≈ εfy(a, t) which is linear. The behaviour of ε obtained from this differential
equation helps us to classify the fixed points.
If limt→∞ ε(t) = 0 then we call it a stable fixed point, if limt→∞ ε(t) = ±∞, then
we say it is unstable, otherwise we say it is neutral. If fy(a, t) = 0, then we need
higher order terms in that Taylor series in order to determine its behaviour.

Example 4.6. ẏ = t(1−y2), so the fixed points are y = ±1. We have fy = −2ty.

For y = 1, then ε̇ = −2tε =⇒ ε0e
−t2 , so ε→ 0 when t→∞. So it is stable.

For y = −1, then ε̇ = 2tε =⇒ ε0e
t2 , so ε→ ±∞ (for ε0 6= 0) when t→∞. So

it is unstable.

4.3.3 Autonomous DEs

Definition 4.7. A DE is called autonomous if f does not depend on t, that is,
it is of the form ẏ = f(y).

So in this case, we apply the perturbation analysis to get ε̇ = f ′(a)ε, thus
ε = ε0e

kt where k = f ′(a), so if ε0 6= 0,

ε→


0, if f ′(a) < 0, so it is stable

±∞, if f ′(a) > 0, so it is unstable

Others, if f ′(a) = 0, so it is neutral

4.3.4 Phase Portraits

Another way to analyze the behaviour of a given DE is from a geometric per-
spective represented by something called phase portrait.

Example 4.7. Chemical kinetics is an important example why it is useful.
Consider neutralization reaction NaOH + HCl = H2O + NaCl. Let a(t), b(t) be
the numbers of NaOH and HCl molecules at times t, and c(t) be the number of
H2O which is equal to that of NaCl.
So the initial condition is a(0) = a0, b(0) = b0, and the model is ċ = λab, also
a = a0 − c, b = b0 − c, so

dc

dt
= λ(a0 − c)(b0 − c)

which is autonomous, so a0, b0 are the fixed points of the DE. We can sketch
the graph of ċ against c, which is called the 2D phase protrait of the DE, where
we can analyze the attraction vectors near the phase protrait by the trends of
it to decide the stability.
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Example 4.8. Let y(t) be the population at time T and birth rate would be
αy for some α and the death rate be βy for some β.
Case 1: Linear model. So ẏ = αy − βy =⇒ y = y0e

(α−β)t, so y →∞ if α > β.
Case 2: Nonlinear model. So ẏ = (α − β)y − γy2. the parameter γ here could
be due to the death due to overcrowdedness, etc. Equivalently, we can write it
as ẏ = ry(1− y/λ) where r = α− β, λ = (α− β)/λ, so we can sketch the phase
protrait again. Note that the fixed points are 0 and λ, the former is unstable
but the latter is stable.

4.3.5 Fixed Points in Discrete Equations

We can introduce fixed points in discrete equations as well. Consider a first
order discrete equation (aka difference equation) of the form xn+1 = f(xn).

Definition 4.8. The fixed point is a discrete equation is a fixed point of the
function f .

We can analyze its stability again by perturbation analysis. Let xf be a
fixed point and we perturb it by a small ε, so we can expand f in terms of
Taylor series

f(xf + ε) = xf + εf ′(xf ) +O(ε2), ε→ 0

So if xn = xf + ε, xn+1 = xf + εf ′(xf ). So xf is stable if |f ′(xf )| < 1, neutral
if |f ′(xf )| = 1, unstable if |f ′(xf )| > 1.

Example 4.9 (Discrete Logistic Equation). Some populations are born in dis-
tinct generations (e.g. lambs born in spring). A nonlinear model of this is

xn+1 − xn
∆t

= λxn − γx2n

This is the discrete version of Example 4.8, so

xn+1 = (1 + λ∆t)xn − γ∆tx2n

We can write alternatively xn+1 = rxn(1−xn) =: f(xn) The function f is called
the logistic map.
Note that the fixed point occurs at 0 or 1 − 1/r. We analyze its stability by
perturbation. At 0, f ′ = r, so it is stable if 0 < r < 1 and unstable if r > 1.
At 1− 1/r, f ′ = 2− r. We assume r < 0 or r > 1 since the other cases are not
physical. 1 Then it is stable for 1 < r < 3 and unstable for r > 3.

5 Higher Order Linear ODEs

5.1 Second Order Linear ODEs with Constant Coefficients

Definition 5.1. A second order linear ODE with constant coefficient is an ODE
of the form

a
d2y

dx2
+ b

dy

dx
+ cy = f(x)

where a, b, c are constants with a 6= 0.

1It’s an applied course, so what the hell.
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Definition 5.2. A linear differential operator D is a linear combination of
(different orders of) differentiation operators.

We know that the (arbitrary order) differentiation operator is linear, hence
any linear differential operator is linear, which gives rise to the principle of
superposition.

Proposition 5.1. If yα, yβ are solutions to ay′′+ by′+ cy = f , then yα− yβ is
a solution to ay′′ + by′ + cy = 0.

Proof. Consider the linear operator

D = a
d2

dx2
+ b

d

dx
+ c

then D(yα − yβ) = D(yα)−D(yβ) = f(x)− f(x) = 0.

We can extend the above proposition to any order of linear ODEs with
constant coefficient in the obvious way.
So we can solve these solutions in the following steps, assuming D is defined as
in the above proof:
First, we find complementary (linearly independent, defined below) solutions
y1, y2 to D(y) = 0.
Then we find a particular solution yp to D(y) = f(x).
The general form of the solutions to D(y) = f(x) is yp +Ay1 +By2 where A,B
are constants.

Definition 5.3. A set of functions (fi)i∈I are linearly dependent if
∑
i cifi(x) =

0 for some constants ci that are not all zero. The sum here is taken over some
finite set of indices.
Otherwise, they are linearly independent.

Equivalently, if a function in the set of functions can be written as a linear
combination of others, then the set is linearly dependent.
Consider a second-order linear differential operator. We know that the a first
order one has eigenfunction to be the exponential function. Note that it is
also the eigenfunction of a second-order one. In fact, the exponential is the
eigenfunction of any linear differential operator. Consider the homogeneous
equation Dy = 0 where

D = a
d2

dx2
+ b

d

dx
+ c

Plug in y = eλx we have aλ2 + bλ+ c = 0 which we call characteristic equation
or auxiliary equation. From FTA, we have at least 1 (complex) solutions. Let
λ1, λ2 be two solutions, then
Case 1: λ1 6= λ2.
Then y1 = Aeλ1x, y2 = Beλ2x are both solutions for each A,B constants. It is
easy to see that these two are linearly independent for AB 6= 0. We can show
that they form a basis for solution space, 2 and any other solutions must be of
the form Aeλ1x +Beλ2x for A,B constants.
Case 2: λ1 = λ2.
In this case, y1, y2 cannot span the solution space, but there is some workaround.

2This will be discussed later.

17



Example 5.1. y′′ − 4y′ + 4y = 0, then (y′ − 2y)′ − 2(y′ − 2y) = 0 can give the
solution.
Or we can consider the slightly modifies equation y′′ − 4y′ + (4 − ε2)y = 0 for
some small enough ε. This modified equation has the general solution yε =
Aeλ1x +Beλ2x where λ1,2 = 2± ε, so

yε = e2x(Aeεx +Be−εx) = e2x((A+B) + εx(A−B) +O(ε2))→ Cxe2x +De2x

for some constants C,D by clever (or not) choices of A,B. This gives a pair of
linearly independent solutions.

5.2 Second Order Linear ODEs with Non-constant Coef-
ficients

Again we are interested in the homogeneous ones due to the superposition prin-
ciple. Consider the equations in the form

y′′ + p(x)y′ + q(x)y = 0

We shall use the method of reduction of order. Given one solution y1 to the
equation, we shall find a second solution by looking for solutions of the form
y2 = vy1.
First, note that y′2 = v′y1 + vy′1, y

′′
2 = v′′y1 + 2v′y′1 + vy′′, so plugging it in we

have
v′(2y′1 + py1) + v′′y1 = 0

So it is a seperable first order equation in v′ which we know how to solve,
plugging it back gives the solution.

5.3 Phase Space

Consider the ODE pi(x)y(i) = f(x) where the summation convention is used
and i is summed over 0, 1, . . . , n. So we can write y(n) as a combination of y(i)

for i ∈ {0, 1, 2, . . . , n− 1} and f and pi’s.

Example 5.2. The damped oscillator has the DE

mÿ = −ky − Lẏ

The state of the system can be described by an n-dimensional solution vector

y =


y
y′

...
y(n−1)


Going back to an undampted oscillator y′′ + 4y = 0 which has the general
solution spanned by y1(x) = cos 2x, y2(x) = sin 2x, so the solution vectors are

y1 =

(
cos 2x
−2 sin 2x

)
, y2 =

(
sin 2x

2 cos 2x

)
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Thus we can do 2D phase portrait of the solutions to observe the two vectors,
where we can find that the trajectories coincide. Since y1, y2 are linearly inde-
pendent, any point in phase space can be obtained from a linear combination of
them. In general, y1, y2, . . . , yn are linearly independent if their solution vectors
are linearly independent in the phase space.

n linearly independent solution vectors form a basis for the phase space of an
nth order ODE. Consider the initial conditions for a second order homogeneous
ODE y(0) = a, y′(0) = b. If the general solution is formed by the linear combi-
nation of linearly independent functions y1, y2, then in order to find a solution
that complies with the initial condition, we will be solving the linear system in
A,B. {

Ay1(0) +By2(0) = a

Ay′1(0) +By′2(0) = b

So we obtain unique solutions if and only if

y1(0)y′2(0) 6= y2(0)y′1(0)

which is true if y1(0), y2(0) are linearly independent.

Definition 5.4. The Wronskian W (x) is defined as

W (x) =

∣∣∣∣∣∣∣∣∣
y1 y2 . . . yn
y′1 y′2 . . . y′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣∣
So the solutions are linearly independent if W (x) 6= 0. But does W (x) = 0

necessarily imply linear dependence?

Theorem 5.2 (Abel’s Theorem). Consider a second order linear ODE y′′ +
py′ + qy = 0. If p(x), q(x) are continuous on an interval I, then either ∀x ∈
I,W (x) 6= 0 or ∀x ∈ I,W (x) = 0

Sketch of proof. Let y1, y2 be solutions to the ODE, and D be the differential
operator in the left hand side of the equation, so

y2D(y1) = y1D(y2) = 0 =⇒ y2y
′′
1 − y1y′′2 + (y2y

′
1 − y1y′2)p =⇒ W ′ + pW = 0

So we could integrate it back from x0 to x to get

W (x) = W (x0) exp

(
−
∫ x

x0

p(u) du

)
which is called the Abel identity. Since p is continuous on a closed interval,
it is bounded and integrable, therefore the exponential function part is always
defined and nonzero, so W (x0) = 0 if and only if W (0) = 0.

Corollary 5.3. If p(x) = 0, then the Wronskian is constant.
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One can generalize the theorem above to nth order linear ODEs. Indeed, for
y′ +A(x)y = 0, we have W ′ + tr(A(x))W = 0.
One practical application of Abel’s identity can be used to find a second solution
y2 given one solution y1. This can be done by observing that

y1y
′
2 − y2y′1 = W (x) = W (x0) exp

(
−
∫ x

x0

p(u) du

)
is both linear and of first order in y2.
We cannot, of course, (analytically) solve all ODEs, but for some special types
of them, it is sometimes possible.

5.4 Special Types of ODEs

Definition 5.5. An ODE is called equidimensional if the differential operator is
unaffected by a multiplicative rescaling. So Dx = Dx̃=αx where α is a constant.
So the general form of a second order linear equidimensional is the following:

ax2
d2y

dx2
+ bx

dy

dx
+ cy = f(x)

There are two methods to find yc.
Method 1: Note that y = xk is an eigenfunction of the eigenvector of x(d/dx).
To solve the homogeneous equation, we can plug the eigenfunction in and find
out that k satisfies

ak(k − 1) + bk + c = 0

If there are two roots k1, k2, then the general solution is yc = Axk1 + Bxk2

where A,B are constants. Otherwise, we have at least one yc, so we could use
the method in previous sections to find the other.
Method 2: Use the substitution z = lnx, so we will have

a
d2y

dz2
+ (b− a)

dy

dz
+ cy = 0

which we know how to solve.
For the forced type of ODE, due to the superposition principle, we just (and
will) need a particular solution yp. There are two methods to do it.
Method 1: Guesswork.

Form of f(x) Educated guess
ekx Aekx

sin(kx), cos(kx) A sin kx+B cos kx
Polynomial Polynomials

We could plug the educated guesses in and solve for the coefficients.
Method 2: Method of parameters. Given complementary functions y1, y2 and
solution vectors y1, y2. Suppose that the solution vector yp for yp satisfies

yp = u(x)y1 + v(x)y2

So what we now try to do is to define two equations for u′, v′{
yp = uy1 + vy2

y′p = uy′1 + vy′2
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So by differentiating the first equation and comparing it with the other, we have
u′y1 + v′y2 = 0. Now differentiate the second equation and plug back to the
differential equation, we know that u′y′1 + v′y′2 = f(x). Since the Wronskian is
not zero due to definitions of y1, y2, we know that we can solve for u′, v′ and a
unique solution is guaranteed. Indeed, u′ = −fy2/W, v′ = fy1/W . So

yp = y2

∫ x

x0

y1(t)f(t)

W (t)
dt− y1

∫ x

x0

y2(t)f(t)

W (t)
dt

Definition 5.6. A forced oscillating ODE is a linear second order ODE forced
by oscillating force.

This arises as many physical systems have a restoring force and damping
(e.g. friction).

Example 5.3. A wheel of mass M is connected to a spring and a damper from
above and a force F (t) is applied from below, so Mÿ = F (t)− ky−Lẏ, written
in stardard form,

ÿ +
L

M
ẏ +

k

M
y =

F (t)

M

we redefine time τ =
√
k/Mt and get

y′′ + 2Ky′ + y = f(τ),K =
L

2
√
kM

We can evaluate the unforced (free, homogeneous) solution where f ≡ 0,
which we know how to solve in the general form Ay1 + By2 where A,B are
constants.
Case 1: K < 1, so we have complex roots of auxiliary equation, so we say the
system is underdamped, so

y = e−Kτ [A sin(
√

1−K2τ) +B cos(
√

1−K2τ)]

Case 2: K = 1, which system we call it is a critically damped.

y = (A+Bτ)e−Kτ

Case 3: K > 1, where the system is overdamped.

y = Aeλ1τ +Beλ2τ , λ1,2 = −K ±
√
K2 − 1

So the unforced response always decays exponentially as time goes to infinity.
As for forced response, if we have

ÿ + µẏ + ω2
0y = sinωt

which by guessing we have the particular solution

yp =
ω2
0 − ω2

ω2
0 − ω2 + µ2ω2

sinωt+
−µω

ω2
0 − ω2 + µ2ω2

cosωt

For µ 6= 0, we have finite complitude oscillations matching the forcing frequency.
Even when ω = ω0, then taking the limit to get −(cosωt)/(µω), in which case

21



we still have finite amplitude oscillations.
So in general, in a damped system, the unforced part gives the short time
response whilst the particular solution gives the long time behaviour.
But if µ = 0, ω0 = ω, we call this is a resonance. The forcing then matches the
unforced responce, where the equation turns to

ÿ + ω0y = sinω0t

We shall use detuning to solve the equation. Consider the equation

ÿ + ω0y = sinωt

So by guessing, we have yp = sinωt/(ω2
0 −ω2). Due to linearity, yp +Ayc works

for any constant A, so

yp =
sinωt− sinω0t

ω2
0 − ω2

=
2

ω2
0 − ω2

cos

(
ω0 + ω

2
t

)
sin

(
ω − ω0

2
t

)
also solves the equation. By letting ω0 → ω, we have

yp = − t cosω0t

2ω0

which indeed solves the problem.

5.5 Dirac Delta (sorry; not sorry)

Definition 5.7. An impulse forcing is a type of forcing by a sudden change.

Example 5.4. A mountainbike riding from the road onto a side block. When
they hits, then there is a sudden increase in altitude, which might be followed
by some oscillation. When the time for this goes to zero, then it is considered
as an (infinite) impulse. So the forced, damped oscillator has the equation

Mÿ = F (t)− ky − Lẏ

Now if we add the impulse, and we integrate both sides and let the time elapsed
during the hitting to the road block tend to 0, we will want to define the impulse
by

I = lim
ε→0

∫ T+ε

T−ε
F (t) dt = lim

ε→0
M [ẏ]T+ε

T−ε

We then introduce the Dirac delta function. 3

Definition 5.8. Fix a family of functions D(t; ε) indexed by ε with the prop-
erties:
1. For any t 6= 0, we have limε→0D(t; ε) = 0 for t 6= 0.
2. ∫

R
D(t; ε) dt = 1

We “define” the Dirac delta function by δ(t) = limε→0D(t; ε).

3And this is the end of the world.
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Proposition 5.4. 1. ∀t 6= 0, δ(t) = 0.
2. For any a < 0 < b, ∫ b

a

δ(t) dt = 1

3. We have the sampling property. For all functions g(x) which are continuous
at x = 0, then ∫

R
g(x)δ(x) dx = g(0)

In general ∫ b

a

g(x)δ(x− x0) dx =

{
g(x0), if x0 ∈ [a, b]

0, otherwise

Proof. Ahem.

Definition 5.9. The Heaviside step function H(x) is defined by

H(x) =

∫ x

−∞
δ(x) dx =

{
1, if x > 0

0, if x < 0

And H(0) is not defined.
It is decreed that H ′(x) = δ(x) “by FTC”. 4

Definition 5.10. The ramp function r(x) is defined by

r(x) =

∫ x

−∞
H(x) dx =

{
x, when x ≥ 0

0, otherwise

By FTC, r′ = H. 5

Consider
y′′ + py′ + qy = δ(x)

Since δ(x) = 0 for all x 6= 0, so y′′ + py′ + qy = 0 for x < 0 and x > 0.
The highest order derivative inherits the discontinuity from the forcing. But we
would want y to be continuous at x = 0, so limε→0[y]ε−ε = 0. And y′ would have
a jump near 0, so

lim
ε→0

[y′]ε−ε = lim
ε→0

∫ ε

−ε
y′′ + py′ + qy dx = 1

We first solve the equations for x < 0 and x > 0, so we will have 4 undetermined
constants. and 2 initial conditions, so we need 2 more equations, which we can
find from the two jump conditions as stated above.

Example 5.5. Consider y′′ − y = 3δ(x − π/2) with y = 0 at x = 0, π. Note
that y′′−y = 0 =⇒ y = A sinhx+B coshx Our initial conditions then implies

y =

{
A sinhx, when x < π/2.

C sinh(π − x), when x > π/2.

4I know, I know, stay calm, it is an applied course.
5Lol I guess?
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For constants A,C. So we put in the jump condition to have 3 =
∫ π/2+ε
π/2−ε y

′′ −

y dx = [y′]
(π/2)+

(π/2)− Putting in the definitions to have

−A cosh(π/2)− c cosh(π/2) = 3

Since we also have 0 = [y]
(π/2)+

(π/2)− , we can solve to get A = C, therefore

A = C =
−3

2 cosh(π/2)

Thus

y =

{
−3 sinh x

2 cosh(π/2) , when x ≤ π/2.
−3 sinh(π−x)
2 cosh(π/2) , when x > π/2.

We can also have the forcing by Heaviside function. Consider

y′′ + py′ + qy = H(x− x0)

For p, q continuous. y(x) satisfies y′′+py′+qy = 0 for x < x0 and y′′+py′+qy = 1
for x > x0 We can evaluate the equation on either sides of x0, thus

[y′′]
x+
0

x−
0

+ p[y′]
x+
0

x−
0

+ q[y]
x+
0

x−
0

= 1

If y′′ behaves like the Heaviside function (then y′ bahaves like the ramp func-

tion), then y′, y are continuous, thus [y′]
x+
0

x−
0

= [y]
x+
0

x−
0

= 0 and [y′′]
x+
0

x−
0

= 1, which

is our jump conditions, which would be enough to find out the constants with
the initial conditions.

5.6 Higher-Order Discrete/Difference Equations

Definition 5.11. The general form of an mth order linear discrete equation
with constant coefficient is

amyn+m + am−1yn+m−1 + · · ·+ a0yn = f(n)

Turns out that they are closely related to higher order DEs, and we can solve
them using the same principles.

Definition 5.12. A difference operator D is such that D(yn) = yn+1. It has
eigenfunctions in the form yn = kn for constant k as D(kn) = k(kn) = kyn.

Note that our difference equation is linear in y, thus we can dissolve y into

sum of particular and complementary solutions yn = y
(c)
n + y

(p)
n .

Example 5.6. We want to solve a2yn+2 + a1yn+1 + a0yn = fn. Consider the
homogeneous equation with f = 0, then we can put in yn = kn to get a2k

2 +
a1k + a0 = 0, so its solutions k1,2 gives the general form of the complementary
solution

y(c)n =

{
Akn1 +Bkn2 , if k1 6= k2

Akn1 +Bnkn1 , if k1 = k2

Note that these are all the complementary solutions since it has 2 degrees of
freedom and the sequence would be completely determined by its value at the
first two initial values.
We can use guessing works for particular solution
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Form of fn Form of y
(p)
n

kn, k 6= k1,2 Akn

kn1,2 Ankn1 +Bnkn2
Polynomial Polynomials

The Fibonacci numbers are defined as y0 = y1 = 1, yn+1 = yn + yn−1 for
n ≥ 1. Note that it has the auxiliary equation k2 − k − 1 = 0, which has roots
k1,2 = (1±

√
5)/2 So by plugging in our initial conditions, we obtain

yn =
1√
5

(φn+1 − (−φ−1)n+1)

where φ = (
√

5+1)/2 is the golden ratio. In particular, yn+1/yn → φ as n→∞.

5.7 Series Solutions

Often, there are no analytic solutions to some particular ODE or it is very hard
to obtain one. In this case, we can try to solve the equation in the form of an
infinite power series. We can use the method of Frobenius. Consider the ODE
py′′+qy′+ry = 0. We will seek a series expansion at x = x0 of a (local) solution
around some point. There are many choice of x0. If the series expansions of
q/p and r/p converge locally at x0, we say x0 is an ordinary point. Otherwise,
we say it is a singular point. There are two types of singular point: If x0 is a
singular point but the equation can be written in the following way:

P (x− x0)2y′′ +Q(x− x0)y′ +Ry = 0

and Q/P,R/P are analytic, then we say x0 is a regular singular point. Note
that Q/P = (x−x0)q/p,R/P = (x−x0)2r/p. Otherwise it is called an irregular
singular point.

Example 5.7. 1. We want to solve

(1− x2)y′′ − 2xy′ + 2y = 0

then q/p = −2x/(1 − x2), r/p = 2/(1 − x2), so x = ±1 are singularities. But
Q/P = (x − x0)q/p = −2x/(1 + x), so x = 1 is regular. Similarly x = −1 is
regular as well.
2. Consider

y′′ sinx+ y′ cosx+ 2y = 0

Then the singularities are nπ, n ∈ Z, but since (x−nπ)/(sinx) as x→ nπ tends
to a limit, every of them is regular.
3. We look into

(1 +
√
x)y′′ − 2xy′ + 2y = 0

So q/p = −2x/(1 +
√
x), one can find that the Taylor series at 0 is undefined.

Indeed, 0 is an irregular singular point here.

Theorem 5.5 (Fuch’s Theorem). 1. If x = x0 is an ordinary point, then there
are two linearly independent power series solutions of the form

y =

∞∑
n=0

an(x− x0)n
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locally near x0.
2. If x = x0 is a regular singular point, then there is at least 1 solution of the
form

y =

∞∑
n=0

an(x− x0)n+σ

where σ is real and a0 6= 0.

Example 5.8. 1. The equation (1− x2)y′′ − 2xy′ + 2y = 0 has singular points
±1 and they are both regular. We first find series solution about an ordinary
point, say x = 0. We try

y =

∞∑
n=0

an(x− 0)n

So by plugging in,

(1− x2)

∞∑
n=2

n(n− 1)anx
n−2 − 2x

∞∑
n=1

nanx
n−1 + 2

∞∑
n=0

anx
n = 0

From which we have ann(n−1)−an−2(n−2)(n−3)−2an−2(n−2)+2an−2 = 0
for n ≥ 2. Just simplify to get n(n− 1)an = (n2 − 3n)an−2, so

an =
n− 3

n− 1
an−2

Consequently, a0, a1, which can be arbitrary constants, could be our initial
condition. Note that a3 = 0, hence ak = 0 for any odd k ≥ 3. for even values
of n, we have

an =
n− 3

n− 1
an−2 =

n− 3

n− 1

n− 5

n− 3
an−4 =

n− 5

n− 1
an−4 = · · · = n− 2k − 1

n− 1
an−2k

Thus a2k = a0/(1− n), so

y = a1x+ a0

(
1− x2 − x4

3
− x6

5
− · · ·

)
= a1x+ a0

(
1− x

2
ln

1 + x

1− x

)
2. Consider 4xy′′ + 2(1− x2)y′ − xy = 0, which has a regular singular point at
x = 0. We now try to expand the solution near it. We try y =

∑∞
n=0 anx

n+σ

for a0 6= 0 by Fuch’s Theorem. So we can plug it in our equation to try and get
a recurrence for the coefficients. Note first that, by multiplying x to both sides

∞∑
n=0

anx
n+σ(4(n+ σ)(n+ σ − 1) + 2(1− x2)(n+ σ)− x2) = 0

Thus by comparing coefficients,

2(n+ σ)(2n+ 2σ − 1)an = (2n+ 2σ − 3)an−2

which is our equivalence relation.
To find σ, we will equate coefficient of lowest power of x. Set n = 0, then we can
equate the coefficient of xσ, so a0(4σ(σ−1))+a02σ = 0 =⇒ 2σ(2σ−1)a0 = 0.
This is called the indicial equation. So we get σ = 0 or σ = 1/2.
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For σ = 0, we again set n = 0 to find that a0 is arbitrary. Then consider
n = 1, we have 2a1 = 0 =⇒ a1 = 0. Our equivalence relation reduced to
2n(2n− 1)an = (2n− 3)an−2, which means that ak = 0 for any odd k. For even
n = 2k, we can calculate a few values to get

y = a0

(
1 +

x2

4 · 3
+

5x4

8 · 7 · 4 · 3
+ · · ·

)
For σ = 1/2, our recurrence relation reduced to (2n+ 1)(2n)bn = (2n− 2)bn−2
for n ≥ 2 where bn = an to avoid ambiguity. We can equate the coefficient in
the lowest power to get b0 being arbitrary, and by considering n = 1 we have
b1 = 0, so bk = 0 for any odd k as well. We can calculate bn for n even and get

y = b0x
1/2

(
1 +

x2

2 · 5
+

5x4

2 · 5 · 4 · 9
+ · · ·

)
There are some special cases of the indicial equation. Let x0 be a regular

singular point, and suppose Re(σ1) ≤ Re(σ2) where σ1,2 are the roots of the
indicial equation.
Case 1: σ2−σ1 is a non-integer, then the two solutions are linearly independent.
Case 2: It is a nonzero integer. In this case, it is possible, but no guarantee,
that the solutions y1, y2 are linearly dependent, so we might need an extra term
in the form cy1 ln(x− x0) in y2, where c is a constant.
Case 3: It is 0. Hence c 6= 0, so we can set c = 1, so we may add y1 ln(x− x0)
to y2 in order to yield two linearly independent solutions.

6 Multivariable Equations

6.1 Functions of Multiple Independent Variables

Consider f(x, y) and a small vector displacement ds = (dx, dy), so the change
along ds is

df =
∂f

∂x
dx+

∂f

∂y
dy = ds · (∇f)

by the multivariate chain rule. Here, ∇f = (fx, fy) is called the gradient of f .
If we write ds = dsŝ with |ŝ| = 1, so df = ds(ŝ · ∇f)

Definition 6.1. The directional derivative is defined as

df

ds
= ŝ · ∇f

Proposition 6.1. 1. The magnitude of ∇f is the maximum rate of change of
f , that is

|∇f | = sup
ŝ,|ŝ|=1

df

ds

And the supremum can be attained.
2. The direction of ∇f is the direction where f increases most rapidly.
3. If ŝ is parallel to the contour of f , then df/ds = 0.

Proof. 1. Cauchy-Schwarz and take ŝ = ∇f/|∇f |.
2,3. Obvious.
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Corollary 6.2. There is always one direction where df/ds = 0.

Proof. Immediate.

Proposition 6.3. Local extrema of f have df/ds = 0 for any direction. Hence
∇f = 0.

Proof. Trivial.

However, if∇f = 0 at some point, it does not follow that the point is an local
extremum, since it could be a saddle point. Near local extrema, the contour of
f is elliptical while it is hyperboly near saddle points. Also, contours of f can
only cross at saddle point.

6.2 Taylor Series for Multivariate Functions

Consider f(x, y) near a point s0 ∈ R2 and a displacement δs along the line δs,
so

f(s0 + δs) = f(s0) + δs
df

ds
+

(δs)2

2

d2f

ds2
+ · · ·

= f(s0) + δs(ŝ · ∇f) +
(δs)2

2
(ŝ · ∇)(ŝ · ∇)f + · · ·

To write it out in coordinate form,

Definition 6.2. The Hessian matrix is defined by

H =

(
fxx fxy
fyx fyy

)
= ∇(∇f)

Note that H is symmetric whenever f is nice enough (e.g. C2) to have fyx = fxy.

We have, by this notation,

f(x) = f(x, y)

= f(x0, y0) + (x− x0)fx + (y − y0)fy

+
1

2
((x− x0)2fxx + 2(x− x0)(y − y0)fxy + (y − y0)2fyy) + · · ·

= f(x0) +∇f(x0)(x− x0)> +
1

2
(x− x0)H(x0)(x− x0)> + · · ·

6.3 Classification of Stationary Points

When ∇f = 0 at some x0, we have

f(x0 + δx) ≈ f(x0) +
1

2
δxH(x0)δx>

Note that this can extend analogously to n dimensions.

Definition 6.3. The Hessian in n dimensions is defined by

H =


fx1x1

fx1x2
. . . fx1xn

fx2x1
fx2x2

. . . fx2xn

...
...

. . .
...

fxnx1
fxnx2

. . . fxnxn


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If f is nice enough to allow change of order of partial derivatives, then H(x0)
is real and symmetric, hence diagonalizable by Spectral Theorem. So we can
choose the basis to be the eigenbasis (which can be chosen to be orthonormal),
therefore

δxH(x0)δx> =

n∑
i=1

λi(δxi)
2

With this, we can classify the stationary points in 3 cases.
Case 1: ∀δx ∈ Rn \ {0}, δxH(x0)δx> > 0. This happens iff λi > 0 for each i,
that is, H is positive definite.
Case 2: ∀δx ∈ Rn \ {0}, δxH(x0)δx> < 0. This happens iff λi < 0 for each i,
that is, H is negative definite.
Case 3: Otherwise, H is indefinite.

Definition 6.4. The signature of H is the pattern of signs of its subdetermi-
nant.

For example, for f(x1, x2, . . . xn), the subdeterminants are

Hk =


fx1x1

fx1x2
. . . fx1xk

fx2x1
fx2x2

. . . fx2xk

...
...

. . .
...

fxkx1
fxkx2

. . . fxkxk


Then the sign is the signs of |H1|, |H2|, . . . , |Hn|.

Theorem 6.4. If H is positive (negative) definite, so is all of Hi.

Therefore a minimum (maximum) point of a real function in Rn is also a
minimum (maximum) point in any subspace of Rn that includes the point.

Type of S.P. Signature
Minimum +,+,+,+, . . .
Maximum −,+,−,+, . . .

Sometimes |H| = 0, in which case this stationary point is called degenerate,
so we need to look at higher order terms in the Taylor series. The helps us in
sketching the contour of a two dimensional function. Consider the coordinate
system aligned with the (orthonormal) eigenbasis of H, so δx = x−x0 = (ξ1, ξ2),
where x0 is a stationary point. In a small region near x0, contour of f satisfies

const = f ≈ f(x0) +
1

2
δxHδx> =⇒ λ1ξ

2
1 + λ2ξ

2
2 = const

Near min/max, λ1, λ2 have the same sign, so the contour looks like an ellipse.
Near saddles, they have the different sign and the contour looks like a hyperbola.

Example 6.1. We want to find and classify the stationary points of

f(x, y) = 4x3 − 12xy + y2 + 10y + 6

and sketch its contour.
We have fx = 12x2 − 12y, fy = −12x+ 2y + 10, so at the stationary point, we
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have (x, y) = (1, 1), (5, 25). Now fxx = 24x, fxy = fyx = −12, fyy = 2. So at
(1, 1),

H =

(
24 −12
−12 2

)
=⇒ |H1| > 0, |H2| < 0

So it is neither a maximum nor a minimum, hence it is a saddle point.
As for (5, 25),

H =

(
120 −12
−12 2

)
=⇒ |H1| > 0, |H2| > 0

so it is a minimum. We can then sketch the contour by drawing ellipses near
(5, 25) and hyperbolic curves near (1, 1).

6.4 System of Linear ODEs

Consider a few dependent variables y1(t), y2(t), . . . which satisfies system of
coupled ODEs.

Example 6.2. Consider {
ẏ1 = ay1 + by2 + f1(t)

ẏ2 = cy1 + dy2 + f2(t)

So in vector form
ẏ = My + f

Any nth order ODE can be written as a system of n first-order ODEs.

Example 6.3. Consider ÿ + aẏ + by = f , so let y1 = y, y2 = y′, then we have

d

dt

(
y1
y2

)
=

(
0 1
−b −a

)(
y1
y2

)
+

(
0
f

)
One way to solve it is to use matrix methods. Consider

ẏ = My + f

First, we find the general solution yc to

ẏc −Myc = 0

Then we find a particular solution yp to the system, so by the superposition
principle the general solution is yp + yc.

To find solution to the homogeneous equation, we try yc = veλt which leads us
to the conclusion that λ must be an eigenvalue of M with eigenvector v.

Example 6.4. Consider

ẏ −
(
−4 24
1 −2

)
y =

(
4
1

)
et

We can find the eigenvalues and eigenvectors of M and find that λ1 = 2, v1 =
(4, 1)>, λ2 = −8, v2 = (−6, 1)> So we have

yc(t) = A

(
4
1

)
e2t +B

(
−6
1

)
e−8t
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We can sketch the phase portrait of y2 against y1 to find a hyperbola-like path
of (y1, y2).
To find the particular integral, we can try

yp =

(
u1
u2

)
et

and find that (u1, u2) = (−4,−1) solves the system, therefore the general solu-
tion is

y =

(
−4
−1

)
et +A

(
4
1

)
e2t +B

(
−6
1

)
e−8t

where A,B are constants.

If the forcing matches the eigenvalue and eigenvector, we can try multiplying
a polynomial in t (mostly just tk will work).
From a linear system of n first-order ODEs, we can construct n uncoupled nth

order ODEs.

Example 6.5. Consider the same equation

ẏ =

(
−4 24
1 −2

)
y +

(
4
1

)
et

We can differentiate the first component to get ÿ1 = −4ẏ1 + 24ẏ2 + 4et =
−6ẏ1 +16y1 +36et, which we know how to solve. Similar way works for y2. One
can check that this essentially gives the same solution.

We can discuss the concept of Phase Portrait in a more general way. For
complementary function yc satisfying ẏc = Myc, then yc = v1e

λ1t + v2e
λ2t

Case 1: λ1, λ2 are real and λ1λ2 < 0, WLOG λ1 > 0 > λ2, then the Phase
Portrait is hyperbolic and converging towards the direction of v1.
Case 2: λ1, λ2 are real and λ1λ2 > 0. If λ1 < λ2 < 0, the phase portrait
converge to 0. This is called the stable node. If λ1 > λ2 > 0, the phase portrait
diverge from 0. this is called the unstable node.
Case 3: They are both complex.
Case 3(a): The real parts are both negative, then the amplitude will decrease in
time, so it produces a spiral-like phase portrait converging to 0 (stable spiral).
Case 3(b): They are both positive, so the amplitude grows in time, so it produces
a spiral-like curve spiraling out of 0, then it is an unstable spiral.
Case 3(c): They are both zero, then the amplitudes does not change and it is
purely oscillating (i.e. circles centering at 0). We can find the direction of the
oscillation by evaluating the equation at a given point and find the sign of ẏ2.

6.5 Nonlinear Systems

Consider a nonlinear autonomous system{
ẋ = f(x, y)

ẏ = g(x, y)

We want to find equilibrium (fixed) point, so for ẋ = ẏ = 0, we have f(x0, y0) =
0 = g(x0, y0) We can do perturbation analysis by a small displacement (x, y) =
(x0 + ξ(t), y0 + η(t)) around the fixed point, so

ξ̇ = f(x0 + ξ, y0 + η) = f(x0, y0) + ξfx(x0, y0) + ηfy(x0, y0) + · · ·
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η̇ = g(x0 + ξ, y0 + η) = g(x0, y0) + ξgx(x0, y0) + ηgy(x0, y0) + · · ·

But f, g are 0 at (x0, y0), so(
ξ̇
η̇

)
≈
(
fx fy
gx gy

)∣∣∣∣
(x0,y0)

(
ξ
η

)
Example 6.6. Lotka-Volterra Model of predator and prey.{

ẋ = αx− βxy = f(x, y)

ẏ = δxy − γy = g(x, y)

where α, β, γ, δ > 0. The fixed point is (0, 0) and (γ/δ, α/β). Note that we have(
fx fy
gx gy

)
=

(
α− βy −βx
δy δx− γ

)
At (0, 0), we have (

ξ̇
η̇

)
≈
(
α 0
0 −γ

)(
ξ
η

)
So the eigenvalues are α,−γ, thus it is a saddle point. For the other fixed point,(

ξ̇
η̇

)
≈
(

0 −βγ
δ

αδ
β 0

)(
ξ
η

)
So it has a pair of purely imaginary eigenvalues, so it a center. The direction of
rotation is counterclockwise. Indeed, we have

ξ̇ =
−βγ
δ

η < 0

for η > 0. We can sketch the solutions.

6.6 Partial Differential Equations

Definition 6.5. A PDE is a DE with partial derivatives.

Here, we will only consider three examples.

6.6.1 First Order Wave Equation

This is the PDE
∂y

∂t
− c∂y

∂x
= 0

where y = y(x, t) and c is a constant. We can solve it with the method of
characteristics. Imagine the contour of y in the x − t plane, then we can start
at some point and move it back and forth along a path. So along a path x(t),
if we have y(x(t), t), then plugging it in our equation by the multivariate chain
rule,

dy

dt
=
∂y

∂t
+
∂y

∂x

dx

dt

So we can take the path where ẋ = −c thus ẏ = 0 (so x = x0 − ct), hence
y will be constant along that line. These paths are called characteristics. If
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y(x, t = 0) = f(x), then y = f(x0) along the characteristic. Therefore the
general solution is

y = f(x+ ct)

for some differentiable f .

Example 6.7. With the initial condition y(x, 0) = x2 − 3, since we have y =
f(x+ ct), y(x, t) = (x+ ct)2 − 3.

If we add some forcing,

Example 6.8. Consider
∂y

∂t
+ 5

∂y

∂x
= e−t

with y(x, 0) = e−x
2

. So dy/dt along the path with dx/dt = 5, so y = A − e−t
along a path. Note that A depends on x(0) = x0, the initial point of the path.

We know y(x, 0) = A−1 = e−x
2
0 , so A = 1+e−x

2
0 . Hence y = 1+e−(x−5t)

2−e−t.

6.6.2 Second Order Wave Equation

We want to solve
∂2y

∂t2
− c2 ∂

2y

∂x2
= 0

So we can “factorize” it to have(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
y = 0

Hence solutions can have yt± cyx = 0, so the solution is in the form f(x+ ct) +
g(x− ct).

Example 6.9. Suppose we want to solve ytt−c2yxx = 0 and y = 1/(1+x2), yt =
0 at t = 0 and y → 0 as x→∞. So{

f(x) + g(x) = 1/(1 + x2)

cf ′(x)− cg′(x) = 0 =⇒ f = g +A

for some constant A. So we can solve to get

g(x) =
1

2(1 + x2)
− A

2
, f(x) =

1

2(1 + x2)
+
A

2

So

y =
1

2(1 + (x+ ct)2)
+

1

2(1 + (x− ct)2)

We can sketch the solution to find that this gives two waves moving to the two
ends.
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6.6.3 Diffusion Equation

We consider
∂y

∂t
= κ

∂2y

∂x2

where κ is a constant. Typical cases where diffusion occurs are pollution trans-
port, heat conduction and movement of microles. Integrate the equation over
R to get

∂

∂t

∫ ∞
−∞

y dx = κ[yx]∞−∞

So if yx → 0 as x→ ±∞, the integeral of y over R will be constant.
We can solve by the use of similarity variable.

Example 6.10. Consider yt = κyxx where y(x, 0) = δ(x) and y → 0 when
x→ ±∞. Define η = x2/(4κt). 6 We can try solutions of the form y = t−αf(η)
to get

−α
t

+ f ′ηt = κf ′′(ηx)2 + κf ′ηxx

But note that ηt = −η/t, ηx = η/(κt), ηxx = 2/(4κt). All of the terms then have
a factor of 1/t, so we can remove the time dependence and get

αf + f ′η + f ′′η + f ′/2 = 0

Let α = 1/2, we have ηF ′ + F/2 = 0 where F = f + f ′. If F = 0 (which is a

solution) then f(η) = Ae−η. Then y = At−1/2e−x
2/(4κt), then from the delta

function condition we have A = 1/
√

4πκ, hence

y(x, t) =
1√
4πκ

t−1/2e−x
2/(4κt)

is a solution.

6Obtained from dimensional analysis
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