HILBERT SCHEMES OF PLANAR CURVES ON SURFACES

DAVID BAI

Abstract. This is an elementary calculation done in the midst of a summer project under Dr Dhruv Ranganathan.

We study the Hilbert schemes of planar curves in hypersurfaces of degree d in \mathbb{P}^3 . We've shown that, for $d \ge 4$, this Hilbert scheme of a generic hypersurface of degree d is isomorphic to a countable disjoint union of copies of \mathbb{P}^3 .

Throughout this article we work over \mathbb{C} .

For a degree $d \ge 4$ projective hypersurface S in \mathbb{P}^3 , we are interested in the Hilbert scheme H(S) parameterising planar curves contained in S. It has the decomposition

$$H(S) = \prod_{k=1}^{\infty} H_k(S) \text{ where } H_k(S) = \text{Hilb}_{S/\mathbb{C}}^{P_k}, P_k(T) = kT + 1 - \binom{k-1}{2}$$

where, essentially, $H_k(S)$ parameterises plane curves of degree k contained in S.

Another noteworthy fact about H(S) is that it is smooth when S is smooth. Indeed, from [1, Corollary 2.7] we know that $\operatorname{Hilb}_{S/\mathbb{C}}$, of which H(S) is a open subscheme, is smooth since S has irregularity 0.

Theorem 1. Suppose S is very general, then

$$H_k(S) \cong \begin{cases} \mathbb{P}^3 & if \ d \mid k; \\ \varnothing & otherwise. \end{cases}$$

Proof. As S is very general, we may as well assume that it's smooth.

We shall first deal with the case where k = d by producing a morphism $\psi : (\mathbb{P}^3)^{\vee} \to H_d(S)$ which is a bijection on \mathbb{C} -points. Here, $(\mathbb{P}^3)^{\vee}$ denotes the dual projective space parameterising planes in \mathbb{P}^3 . Since both \mathbb{P}^3 and $H_d(S)$ are smooth and projective, ψ would then have to be an isomorphism by Zariski's Main Theorem.

To give a morphism $(\mathbb{P}^3)^{\vee} \to H_d(S)$ is the same as to give a flat family $Z \subset S \times (\mathbb{P}^3)^{\vee} \to (\mathbb{P}^3)^{\vee}$ with Hilbert polynomial P_d . To construct ψ , we take Z to be the family whose fibre over a geometric point Spec $\bar{k} \to (\mathbb{P}^3)^{\vee}$ (corresponding to a plane $V \subset \mathbb{P}^3_{\bar{k}}$) is the closed subscheme of $S_{\bar{k}}$ defined by the ideal of V restricted to $S_{\bar{k}}$ ("intersection of V with $S_{\bar{k}}$ "). Alternatively, Z may be described as the relative Hilbert scheme parameterising pairs $(p, V) \in S \times (\mathbb{P}^3)^{\vee}$ with $p \in V$.

It follows that Z as such is a flat family, and on the level of \mathbb{C} -points it takes $V \in (\mathbb{P}^3)^{\vee}$ to the curve produced by the intersection of V with S. This is a injection, for if two different planes intersects S at the same curve C, then C is contained in the intersection

Date: August 2022.

DAVID BAI

of the two planes, which is a line. It is also a surjection: By the theorem of Noether-Lefchetz, for very general choice of S, any curve $C \subset S$ must be the complete intersection intersection of S with another surface S', say of degree d'. But then C must have degree dd' by Bézout's theorem, hence S' is a plane.

This Noether-Lefchetz argument also shows that $H_k(S) = \emptyset$ for $d \nmid k$, and that any plane curve on *S* must be irreducible (and its support has degree exactly *d*).

It remains to deal with the case where k = dn for some n > 1.

Consider the map $\phi(\bar{k})$ that brings $C \in H_d(S)(\bar{k})$ to the curve with ideal \mathcal{I}_C^n , which is an element of $H_{dn}(S)(\bar{k})$. This comes from a morphism $\phi: H_d(S) \to H_{dn}(S)$ using the same procedure as before. Again, due to Zariski's main theorem, to conclude ϕ is an isomorphism it suffices to show that $\phi(\bar{k})$ is a bijection.

It is an injection since taking support recovers C. It is a surjection again due to Noether-Lefchetz: Any curve in $H_d(S)(\bar{k})$ is a complete intersection, hence an effective Cartier divisor. But any effective Cartier divisor on S is determined by its support and multiplicity by the well-known comparison theorem between Weil and Cartier divisors, so we have surjectivity.

References

[1] Fogarty, J. Algebraic families on an algebraic surface. American Journal of Mathematics 90, 2 (1968), 511-521.