HILBERT SCHEMES OF PLANAR CURVES ON SURFACES

DAVID BAI

Abstract

This is an elementary calculation done in the midst of a summer project under Dr Dhruv Ranganathan.

We study the Hilbert schemes of planar curves in hypersurfaces of degree d in \mathbb{P}^{3} We've shown that, for $d \geq 4$, this Hilbert scheme of a generic hypersurface of degree d is isomorphic to a countable disjoint union of copies of \mathbb{P}^{3}.

Throughout this article we work over \mathbb{C}.
For a degree $d \geq 4$ projective hypersurface S in \mathbb{P}^{3}, we are interested in the Hilbert scheme $H(S)$ parameterising planar curves contained in S. It has the decomposition

$$
H(S)=\coprod_{k=1}^{\infty} H_{k}(S) \text { where } H_{k}(S)=\operatorname{Hilb}_{S / \mathbb{C}}^{P_{k}}, P_{k}(T)=k T+1-\binom{k-1}{2}
$$

where, essentially, $H_{k}(S)$ parameterises plane curves of degree k contained in S.
Another noteworthy fact about $H(S)$ is that it is smooth when S is smooth. Indeed, from [1] Corollary 2.7] we know that $\operatorname{Hilb}_{S / \mathbb{C}}$, of which $H(S)$ is a open subscheme, is smooth since S has irregularity 0 .

Theorem 1. Suppose S is very general, then

$$
H_{k}(S) \cong \begin{cases}\mathbb{P}^{3} & \text { ifd } \mid k ; \\ \varnothing & \text { otherwise }\end{cases}
$$

Proof. As S is very general, we may as well assume that it's smooth.
We shall first deal with the case where $k=d$ by producing a morphism $\psi:\left(\mathbb{P}^{3}\right)^{\vee} \rightarrow$ $H_{d}(S)$ which is a bijection on \mathbb{C}-points. Here, $\left(\mathbb{P}^{3}\right)^{\vee}$ denotes the dual projective space parameterising planes in \mathbb{P}^{3}. Since both \mathbb{P}^{3} and $H_{d}(S)$ are smooth and projective, ψ would then have to be an isomorphism by Zariski's Main Theorem.
To give a morphism $\left(\mathbb{P}^{3}\right)^{\vee} \rightarrow H_{d}(S)$ is the same as to give a flat family $Z \subset S \times\left(\mathbb{P}^{3}\right)^{\vee} \rightarrow$ $\left(\mathbb{P}^{3}\right)^{\vee}$ with Hilbert polynomial P_{d}. To construct ψ, we take Z to be the family whose fibre over a geometric point $\operatorname{Spec} \bar{k} \rightarrow\left(\mathbb{P}^{3}\right)^{\vee}$ (corresponding to a plane $V \subset \mathbb{P}_{\bar{k}}^{3}$) is the closed subscheme of $S_{\bar{k}}$ defined by the ideal of V restricted to $S_{\bar{k}}$ ("intersection of V with $S_{\vec{k}}{ }^{\prime \prime}$). Alternatively, Z may be described as the relative Hilbert scheme parameterising pairs $(p, V) \in S \times\left(\mathbb{P}^{3}\right)^{\vee}$ with $p \in V$.
It follows that Z as such is a flat family, and on the level of \mathbb{C}-points it takes $V \in\left(\mathbb{P}^{3}\right)^{V}$ to the curve produced by the intersection of V with S. This is a injection, for if two different planes intersects S at the same curve C, then C is contained in the intersection

Date: August 2022.
of the two planes, which is a line. It is also a surjection: By the theorem of NoetherLefchetz, for very general choice of S, any curve $C \subset S$ must be the complete intersection intersection of S with another surface S^{\prime}, say of degree d^{\prime}. But then C must have degree $d d^{\prime}$ by Bézout's theorem, hence S^{\prime} is a plane.
This Noether-Lefchetz argument also shows that $H_{k}(S)=\varnothing$ for $d \nmid k$, and that any plane curve on S must be irreducible (and its support has degree exactly d).
It remains to deal with the case where $k=d n$ for some $n>1$.
Consider the map $\phi(\bar{k})$ that brings $C \in H_{d}(S)(\bar{k})$ to the curve with ideal \mathcal{I}_{C}^{n}, which is an element of $H_{d n}(S)(\bar{k})$. This comes from a morphism $\phi: H_{d}(S) \rightarrow H_{d n}(S)$ using the same procedure as before. Again, due to Zariski's main theorem, to conclude ϕ is an isomorphism it suffices to show that $\phi(\bar{k})$ is a bijection.

It is an injection since taking support recovers C. It is a surjection again due to NoetherLefchetz: Any curve in $H_{d}(S)(\bar{k})$ is a complete intersection, hence an effective Cartier divisor. But any effective Cartier divisor on S is determined by its support and multiplicity by the well-known comparison theorem between Weil and Cartier divisors, so we have surjectivity.

References

[1] Fogarty, J. Algebraic families on an algebraic surface. American Journal of Mathematics 90, 2 (1968), 511-521.

