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Introduction

Suppose we have a moduli space M parameterising families of abelian varieties over a field k.
Any abelian variety X0 over k defines a closed point ofM, so it makes sense to talk about the
tangent space at that point. Elements of this tangent space should correspond to elements of
M(k[ϵ]/(ϵ2)) reducing to X0 ∈M(k).

In general, the study of infinitesimal neighbourhoods of X0 in M can be viewed as the study
of ways in which X0 can be lifted across a closed immersion Spec(k) → S for some Noetherian
scheme S whose underlying set consists of one point. Of course, it is necessary and sufficient
that S = Spec(R) for some Artinian local ring R with residue field k. One can also consider
a more general situation of lifting an abelian scheme over a base ring R′ across a surjection
R→ R′ with nilpotent kernel.

This essay gives an account of classical results on problems of this sort, commonly known as the
“deformation theory” of abelian schemes.

In Chapter 1, we develop obstruction theory, which gives a cohomological characterisation of
infinitesimal deformations of smooth morphisms and smooth schemes. This would be a conve-
nient tool when we go on to study the general deformation theory of abelian schemes in Chapter
2, where we show that abelian schemes can always be lifted across a surjection R → R′ of
Noetherian rings with nilpotent kernel.

We also construct the local moduli MX0
associated to an abelian variety X0 over k, which

parameterises the deformations of X0 over various Artinian local rings with residue field k. We
prove, with the help of a criterion due to Schlessinger, that this local moduli is pro-representable
by a power series ring in (dimX0)

2 variables.

We then specialise to the positive characteristic case. Fix a prime p which shall be nilpotent
in all rings considered. We devote Chapter 3 to Drinfeld’s proof of the classical theorem of
Serre-Tate, which states that the deformation theory of abelian schemes in this case is controlled
precisely by the deformation theory of their p-divisible groups.

Using the Serre-Tate theorem, we obtain in Chapter 4 a canonical way to equip MX0
with

a group structure for any ordinary abelian variety X0 over an algebraically closed field k of
characteristic p. We also sketch how one would use this to lift X0 canonically to an abelian
scheme over the ring W (k) of Witt vectors.

We mainly work under the Noetherian hypothesis. Nonetheless, most of the main theorems hold
in general (after minimal modifications) and can be deduced from the Noetherian case using
standard techniques such as [2, IV3, §8.9].
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1 Obstruction Theory

1.1 Smooth Morphisms and Infinitesimal Liftings

In differential geometry, a map between manifolds is a submersion at a point if its differential
there is surjective. Mimicking this behaviour, one is inspired to take the following definition
of a smooth morphism in the context of algebraic geometry, sometimes known as the Jacobian
criterion.

Definition 1.1. A ring map B → A is standard smooth if there is an isomorphism of B-algebras

A ∼= B[T1, . . . , Tn]/(f1, . . . , fm)

such that n ≥ m ≥ 0 and det((∂fi/∂Tj)1≤i,j≤m) ∈ A×.

Definition 1.2. A morphism f : X → S is smooth at x ∈ X if there exists affine opens
U = Spec(A) ⊂ X, V = Spec(B) ⊂ S such that x ∈ U , f(U) ⊂ V , and the induced ring map
B → A is standard smooth. f is smooth if it is smooth at every x ∈ X.

One immediately sees that a smooth morphism is flat and locally of finite presentation. In
particular, it is (universally) open.

Unsurprisingly, differentials over a smooth morphism are quite well-behaved: If B → A =
B[T1, . . . , Tn]/(f1, . . . , fm) is standard smooth, then the module of differentials ΩA/B is free on
dTm+1, . . . ,dTn. Since smooth morphisms are covered by standard smooth ring maps, we have:

Proposition 1.1.1. Suppose f : X → S is a smooth morphism, then ΩX/S is a finite locally
free OX-module. Furthermore, for any x ∈ X, rankx ΩX/S = dimxXf(x).

Proof. [13, Lemma 02G1].

Definition 1.3. Suppose f : X → S is a smooth morphism with connected fibres. Then its
relative dimension is the locally constant function S → Z≥0 sending s ∈ S to dimXs.

Example 1.1.1. If B → A = B[T1, . . . , Tn]/(f1, . . . , fm) is standard smooth, then Spec(A) →
Spec(B) has relative dimension n−m.

Despite it being well-motivated, the Jacobian criterion is not usually convenient to work with,
since one has to choose the coordinates T1, . . . , Tn. It turns out that there is a more canonical
characterisation of smoothness.

Proposition 1.1.2 (Infinitesimal Lifting Criterion). A morphism X → S is smooth if and only
if it is locally of finite presentation, and for every commutative diagram of solid arrows

X Spec(A′)

S Spec(A)

with A→ A′ a surjection with nilpotent kernel, there is a morphism filling in the dashed arrow.

Proof. [13, Lemma 02H6].

In view of this, we make the following definition:

Definition 1.4. Fix a base scheme S and let C be a full subcategory of (Sch/S).

A functor F : Cop → (Sets) is formally smooth if, for any surjection A → A′ with nilpotent
kernel such that Spec(A),Spec(A′) ∈ ob(C), the induced map F (A)→ F (A′) is surjective.

An S-scheme X is formally smooth if its functor of points is formally smooth on (Sch/S).
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So Proposition 1.1.2 can be rephrased as saying that X → S is smooth if and only if it is locally
of finite presentation and formally smooth.

Remark 1.1.1. Suppose that all closed subschemes of Y live in ob(C) whenever Y does. Then,
to check the formal smoothness of F , it suffices to check the surjectivity of F (A)→ F (A′) when
A → A′ is a surjection with square-zero kernel. Indeed, any surjection A → A′ with nilpotent
kernel is a composite A = AN → AN−1 → · · · → A0 = A′ of surjections with square-zero kernels.

The criterion of Proposition 1.1.2 can be further simplified when S is locally Noetherian.

Definition 1.5. A surjection ϕ : A→ A′ of Artinian local rings is small if mA · kerϕ = 0.

Proposition 1.1.3. When S is locally Noetherian, to check the lifting criterion in Proposition
1.1.2 it suffices to check the cases where A→ A′ is a small surjection of Artinian local rings.

Proof. [13, Lemma 02HX].

1.2 Lifting Smooth Morphisms

Let X → S be smooth. Proposition 1.1.2 tells us that, whenever Y ′ → Y is a closed immersion
of affine S-schemes with nilpotent ideal, we may lift a Y ′-point of X to a Y -point of X.

However, there is no guarantee that this lifting will be unique. So if we want to study such a
lifting across closed immersions Y ′ → Y of S-schemes in general, we cannot simply glue together
local liftings. Our aim in this section is to study infinitesimal liftings in this general setting.

First, we analyse the space of such liftings assuming it’s nonempty. Fix g′ : Y ′ → X. Let I
be the sheaf of ideals of Y ′ in Y . We might as well assume that I2 = 0. Then I is also an
OY ′ -module.

Lemma 1.2.1. Let A,B be R-algebras and f, g : B → A maps of R-algebras. Suppose I
is a square-zero ideal of A. Then A/I acts on I. Suppose in addition that the composites
π ◦ f, π ◦ g : B → A/I agree (where π : A→ A/I is the quotient map), then f − g ∈ DerR(B, I)
where B acts on I through A/I.

Furthermore, for any f : B → A and D ∈ DerR(B, I), g = f+D : B → A is a map of R-algebras
with π ◦ f = π ◦ g.

Proof. Since π ◦ (f − g) = 0, f − g is an R-linear map into I.

For a ∈ B,m ∈ I, we have by definition of the B-action that a · m = f(a)m = g(a)m. So
(f − g)(ab) = f(ab) − g(ab) = f(a)f(b) − g(a)g(b) = f(b)(f(a) − g(a)) + g(a)(f(b) − g(b)) =
b · (f − g)(a) + a · (f − g)(b), i.e. f − g is a derivation. Reversing this calculation shows the last
statement.

Globalising this argument, we conclude that the liftings of g′ : Y ′ → X to Y → X differ by an
element of G = DerOS

((g′)−1OX , I) = DerOS
(OX , g

′
∗I) = HomOY ′ ((g

′)∗ΩX/S , I).
In other words, we have a simply transitive action of G on the set of liftings as given by the
lemma. We capture this phenomenon with the following definition.

Definition 1.6. For a group G, a G-torsor is a nonempty G-set with simply transitive G-action.

Loosely speaking, a G-torsor is just G except we forget where the identity is.

Definition 1.7. Let X → S be a smooth morphism. Its relative tangent sheaf is the OX -module
TX/S = HomOX

(ΩX/S ,OX) = DerOS
(OX ,OX).

By Proposition 1.1.1, TX/S is finite locally free. We make the natural identification

G = H0(Y ′, I ⊗OY ′ (g
′)∗TX/S).
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Remark 1.2.1. There is a sheaf version of torsors:

Let G be a sheaf of abelian groups and L a sheaf of sets on the same topological space X.
Suppose G acts on L, in the sense that there is a map of sheaves G × L → L which becomes
a group action on every open set of X. Then L is called a pseudo G-torsor if, for each open
U ⊂ X, either L(U) is empty or the G(U)-action is simply transitive. It is called a G-torsor if in
addition that X can be covered by open sets on which L has sections.

Our argument essentially shows that the sheaf L of local liftings is a (I ⊗OY ′ (g
′)∗TX/S)-torsor.

Theorem 1.2.2. Fix a base scheme S. Let X be a smooth S-scheme. Suppose j : Y ′ → Y is a
closed immersion with square-zero ideal I and let g′ : Y ′ → X be a morphism.

Suppose Y ′ is separated over Spec(Z). Then there is a natural “obstruction element”

o ∈ H1(Y ′, I ⊗OY ′ (g
′)∗TX/S)

such that o = 0 if and only if a lifting g : Y → X of g′ exists.

Moreover, if o = 0, then the set of such liftings is a H0(Y ′, I ⊗OY ′ (g
′)∗TX/S)-torsor.

Remark 1.2.2. The theorem is in fact true without the separatedness assumption on Y ′ (see
[4, Theorem 8.5.9(a)]). We introduce this extra hypothesis because we only need the separated
case, and because we can explicitly write down the obstruction element in this case.

Proof. We first fix some notations: For an open set U of the common topological space for Y
and Y ′, we write U for the associated open subscheme of Y and U ′ the open subscheme of Y ′.
We also write G = I ⊗OY ′ (g

′)∗TX/S .

Fix an affine open cover {Uα}α of Y , which gives rise to an affine open cover U = {U ′
α}α of Y ′.

Since Y ′ is separated, we may identify Hi(Y ′,G) = Ȟi(U ,G) (cf. [13, Lemma 01XD]).

By Proposition 1.1.2, each g′|U ′
α
can be lifted to some gα : Uα → X. On each overlap U ′

α ∩ U ′
β ,

both gα|Uα∩Uβ
and gβ |Uα∩Uβ

lift g′|U ′
α∩U ′

β
. So they differ by an element ϕβα ∈ H0(U ′

α ∩ U ′
β ,G).

This collection of data gives a Čech 1-cochain ϕ ∈ Č1(U ,G).
It is in fact a cocycle. Indeed, (∂ϕ)αβγ = ϕβγ − ϕαγ + ϕαβ ∈ H0(U ′

α ∩ U ′
β ∩ U ′

γ ,G) acts trivially
on the restriction of gα to Uα ∩ Uβ ∩ Uγ (which is a local lifting of g′ there). But the action is
simply transitive, so this section must vanish.

Furthermore, the class of this cocycle does not depend on the initial choice of (gα)α, for if (g̃α)α
is another set of local liftings, then ϕ−ϕ̃ is the coboundary of the 0-cochain given by the elements
of H0(U ′

α,G) measuring the differences between the liftings. In addition, if we take a finer affine
cover, then the resulting classes eventually agree in H1(Y ′,G). In particular, o = [ϕ] ∈ H1(Y ′,G)
also does not depend on the choice of covering.

The vanishing of o is equivalent to ϕ being a coboundary. If a global lifting g : Y → X exists,
then taking gα = g|Uα

shows that ϕ is a coboundary. Conversely, if ϕ = ∂µ for some 0-cochain
µ, then refining each gα by µα gives rise to local data which glue to a global lifting Y → X.

The last part of the theorem follows from what we have already discussed.

Remark 1.2.3. The theory is usually applied to the following situation: SupposeX, Y are smooth
S-schemes, i : S′ → S is a closed immersion with square-zero ideal I, and g′ : Y ′ → X ′ is an
S′-morphism (where Y ′ = Y ×S S

′, X ′ = X ×S S
′). Then an S-morphism g : Y → X has g′ as

its base-change to S′ if and only if it lifts the composite Y ′ → X ′ → X.

But Y ′ → Y is a closed immersion with square-zero ideal since S′ → S is. As Y is smooth
(hence flat) over S, this ideal is in fact f∗I where f : Y → S is the structure map of Y .

By Theorem 1.2.2, such a lifting g exists if and only if an element

o = o(g′, i) ∈ H1(Y ′, f∗I ⊗OY ′ (g
′)∗TX′/S′)

vanishes. And when o = 0, the set of liftings is a H0(Y ′, f∗I ⊗OY ′ (g
′)∗TX′/S′)-torsor.
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Remark 1.2.4. We may understand the spaces Hi(Y ′, f∗I ⊗OY ′ (g
′)∗TX′/S′) after another base-

change along a nilpotent closed immersion S0 → S′, since such an operation does not change
the topological space.

For example, if S′ = Spec(R′)→ S = Spec(R) is given by a small surjection R→ R′ of Artinian
local rings (with kernel I, say), we can take Y0 = Spec(k) where k = R′/mR′ . We may then
make a natural identification

Hi(Y ′, f∗I ⊗OY ′ (g
′)∗TX′/S′) = Hi(Y0, I ⊗k g

∗
0TX0/k) = Hi(Y0, g

∗
0TX0/k)⊗k I

where g0 : Y0 → X0 is the base-change of g′ : Y ′ → X ′ along S0 → S′. Here, we have regarded
I as a k-vector space via the R′-action on it, which is allowed since mR′ · I = 0.

Remark 1.2.5. From its construction, the obstruction element satisfies a “chain rule”: Suppose
i : S′ → S is a closed immersion with square-zero ideal, X, Y , Z are smooth S-schemes, X ′,
Y ′, Z ′ are their base-change to S′, and f ′ : X ′ → Y ′, g′ : Y ′ → Z ′ are S′-morphisms. Then
o(g′ ◦ f ′, i) = (f ′)∗o(g′, i).

1.3 Infinitesimal Variations of Smooth Schemes

Fix a closed immersion S′ → S with nilpotent ideal I.
Let X ′ → S′ a smooth morphism. We want to study the lifting of X ′ → S′, i.e. Cartesian
squares of the form

X ′ X

S′ S

□

We will only be interested in smooth liftings.

Such a lifting, if exists, automatically inherits some good properties of the original scheme.

Lemma 1.3.1. Suppose S′ → S is a closed immersion of locally Noetherian schemes with
nilpotent ideal and X ′ → S′ is smooth and proper. Then any smooth lifting X → S is proper.
Moreover, if the geometric fibres of X ′ → S′ are connected, then the geometric fibres of X → S
are also connected.

Proof. Since X → S and X ′ → S′ are the same on the level of topological spaces, X → S must
too be quasicompact. It is also locally of finite type by the definition of smoothness.

Now X ′ → X is a closed embedding with nilpotent ideal, so for any reduced ring R the map
X ′(R) → X(R) is a bijection. Therefore the valuative criterion (cf. [5, Theorem II.4.7]) for
X ′ → S′ → S implies the valuative criterion for X → S. And all the geometric fibres of X → S
are in fact geometric fibres of X ′ → S′.

So let’s study the existence and (non-)uniqueness of smooth liftings. As in the previous section,
our strategy is as follows: First of all, a smooth lifting always exists locally on X ′.

Lemma 1.3.2. For every x ∈ X ′, there is some open U ′ ⊂ X ′ containing x such that there
exists a smooth morphism U → S with U ′ = U ×S S

′.

We can of course make U affine by restriction. Then U ′ too has to be affine since U ′ → U is a
closed immersion.

Sketch of proof. This is a local statement, so we can assume WLOG that X ′, S are affine and
X ′ → S′ is induced by a standard smooth ring map. But then we can simply lift it by lifting
the polynomials f1, . . . , fm as in Definition 1.1.
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Knowing this, our task now is to measure the non-uniqueness of this lifting. The following
general lemma is surprisingly convenient in this analysis.

Lemma 1.3.3. Suppose f : X → Y is an S-morphism with X flat over S. Then f is an
isomorphism if and only if its base-change f × idS′ : X ×S S

′ → Y ×S S
′ is.

Proof. The “only if” part is immediate.

For the “if” part, first observe that S′ → S is surjective and is a closed immersion. As its base-
change, the projection X ×S S

′ → X inherits these two properties. In particular, X ×S S
′ → X

is a homeomorphism. Similarly, Y ×S S
′ → Y too is a homeomorphism. So f must be a

homeomorphism since f × idS′ is. Hence we may reduce to the affine case.

It suffices to show the following: Suppose R → R′ is a surjective ring map with nilpotent
kernel I (say In = 0), u : M → P is a morphism of R-modules with P flat over R, and
u⊗R R

′ :M/IM → P/IP is an isomorphism, then u is an isomorphism.

Put N = keru,Q = cokeru. From the right-exactness of −⊗R R
′, we get an exact sequence

M/IM P/IP Q/IQ 0
u⊗RR′

∼

which shows that Q/IQ = 0. So Q = IQ = I2Q = · · · = InQ = 0. This also gives a short exact
sequence

0 N M P 0

whence the exact sequence

Tor1R(P,R
′) N/IN M/IM P/IP 0.

u⊗RR′

∼

But Tor1R(P,R
′) = 0 as P is flat over R, hence N/IN = 0 which means that N = IN = I2N =

· · · = InN = 0.

We are now ready to say something concrete. As usual, we consider only the case where I2 = 0.
Take a smooth lifting f : X → S of f ′ : X ′ → S′. Since f is flat, X ′ → X is automatically
a closed immersion with square-zero ideal f∗I. This becomes the OX′ -module (f ′)∗I on X ′,
where we interpret I as a OS′ -module.

Suppose now that X̃ → S is another lifting together with a map X → X̃ making the diagram

X̃ X ′

S X

commute, then this map must be an (S-)isomorphism by Lemma 1.3.3. In particular, X̃ → S
must also be smooth.

Note that such a map exists when X is affine by Proposition 1.1.2. So an affine U in Lemma
1.3.2 is unique up to (non-unique) isomorphism.

The non-canonicality of a smooth lifting can be easily measured by what we have done.

Proposition 1.3.4. Suppose X ′ is separated over Spec(Z), f ′ : X ′ → S′ is smooth, and f :
X → S is a smooth lifting of it. The group AutS(X,S

′) of S-automorphisms of X which become
the identity on X ′ is naturally isomorphic to H0(X ′, (f ′)∗I ⊗OX′ TX′/S′).

Proof. Theorem 1.2.2 and Remark 1.2.3 shows that AutS(X,S
′) is a H0(X ′, (f ′)∗I⊗OX′ TX′/S′)-

torsor. But the group action is clearly compatible with composition of automorphisms. Hence
this becomes an isomorphism of groups.
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1.4 Lifting Smooth Schemes

Theorem 1.4.1. Let i : S′ → S be a closed immersion with square-zero ideal I and let f ′ :
X ′ → S′ be a smooth morphism. Suppose X ′ is separated over Spec(Z). Then there is a natural
“obstruction element”

o = o(X ′, i) ∈ H2(X ′, (f ′)∗I ⊗OX′ TX′/S′)

such that o = 0 if and only if f ′ admits a smooth lifting X → S.

Moreover, if o = 0, then the set

L (X ′, i) = {isomorphism classes of pairs (X,ϕ) such that

X → S is smooth and ϕ : X ×S S
′ → X ′ is an isomorphism}

is a H1(X ′, (f ′)∗I ⊗OX′ TX′/S′)-torsor.

Remark 1.4.1. Again, the separatedness hypothesis can be removed. See [4, Theorem 8.5.9(b)].

Proof. Write G = (f ′)∗I ⊗OX′ TX′/S′ .

Pick an affine open cover U = {U ′
α}α of X ′ such that each U ′

α → S′ can be lifted to a smooth
affine scheme Uα → S. Write jα : U ′

α → Uα which is a surjective closed immersion. For indices
α1, . . . , αl, we denote by U ′

α1···αl
the (affine) open U ′

α1
∩ · · · ∩ U ′

αl
.

As in the proof of Theorem 1.2.2, we note the isomorphism Ȟi(U ,G) = Hi(X,G).
Now jα(U

′
αβ) and jβ(U

′
αβ) are both affine smooth liftings of U ′

αβ . By our discussion in the last

section, we get an S-isomorphism ξβα : jα(U
′
αβ) → jβ(U

′
αβ). Write ξγβα : jα(U

′
αβγ) → jβ(U

′
αβγ)

for its restriction.

cαβγ = (ξβγα)
−1 ◦ ξαγβ ◦ ξ

γ
βα is an element of AutS(jα(U

′
αβγ), S

′) ∼= H0(U ′
αβγ ,G) (Proposition

1.3.4). They give the data of a Čech 2-cochain c ∈ Č2(U ,G). c is in fact a cocycle: Its boundary
has components

(∂c)αβγδ = cβγδ − cαγδ + cαβδ − cαβγ = −cαγδ + cαβδ + cβγδ − cαβγ .

On jα(U
′
αβγδ), this is represented by the automorphism(

(ξδγα)
−1 ◦ (ξαδγ)−1 ◦ ξγδα

)
◦
(
(ξβδα)

−1 ◦ ξαδβ ◦ ξδβα
)

◦
(
ξ−1
βα ◦ ((ξ

γ
δβ)

−1 ◦ ξβδγ ◦ ξ
δ
γβ) ◦ ξβα

)
◦
(
(ξγβα)

−1 ◦ (ξαγβ)−1 ◦ ξβγα
)

where everything cancels out to give the identity. Similar to the proof of Theorem 1.2.2, it’s
clear that the class o = [c] ∈ H2(X,G) does not depend on the choice of U , the local liftings, or
{ξβα}βα. For example, if a different {ξ̃βα}βα was chosen, then the resulting c̃ would differ from

c by the coboundary of the 1-cochain ξ̃−1
βα ◦ ξβα ∈ AutS(jα(U

′
αβ), S

′) ∼= H0(U ′
αβ ,G).

If a global lifting X → S exists, then we can take Uα to be the pullback of U ′
α in X, and ξβα the

identity map on Uα ∩ Uβ . Then the local data of c are just the identity maps, so c = 0 which is
a coboundary. Conversely, if o = 0, then c = ∂ζ for some 1-cycle ζ. We then modify each ξβα
with ζβα. This new set of local data then gives c = 0, which means that the cocycle condition
ξβγα = ξαγβ ◦ ξ

γ
βα holds. So we can glue these Uα together to obtain a global lifting X → S.

Now suppose o = 0, then L ̸= ∅. Fix an “origin” [(X,ϕ)] ∈ L . For indices α1, . . . , αl, we write
Xα1···αl

to denote the pullback of U ′
α1···αl

in X.

Any Čech 1-cocycle ζαβ ∈ AutS(Xαβ , S
′) ∼= H0(U ′

αβ ,G) provides a set of gluing data for {Xα}α
since they satisfy the cocycle condition. So they glue to a scheme Xζ and an isomorphism
Xζ ×S S

′ → X ′. This is isomorphic to (X,ϕ) if and only if there is a system of elements
µα ∈ AutS(Xα, S

′) ∼= H0(U ′
α,G) gluing to an isomorphism X → Xζ , which is precisely saying

that ζ = ∂µ is a coboundary.

8



Therefore this defines an action of H1(X,G) on L with trivial stabilisers. It is also transitive.
Indeed, given any [(Y, ψ)] ∈ L , we always have a (noncanonical) isomorphism ϕα : Yα → Xα.
Then Y ∼= Xζ where ζαβ = ϕβ ◦ ϕ−1

α ∈ AutS(Xαβ , S
′).

Remark 1.4.2. From the construction of o, the following naturality properties are immediate:

(i) Suppose f ′ : X ′ → S′, g′ : Y ′ → S′ are smooth morphisms and h′ : X ′ → Y ′ is an S′-
morphism. Then o(X ′, i) and o(Y ′, i) have the same image in H2(X ′, (f ′)∗I ⊗OX′ (h

′)∗TY ′/S′).
In particular, o is invariant under automorphisms.

(ii) Suppose X ′ → S′, g′ : Y ′ → S′ are smooth. Then we have o(X ′ ×S′ Y ′, i) = i1(o(X
′, i)) +

i2(o(Y
′, i)) where i1, i2 are the compositions of pr∗1, pr∗2 with the split injections from the

identification TX′×S′Y ′/S′ = pr∗1 TX′/S′ ⊕ pr∗2 TY ′/S′ . It’s worth noting that i1, i2 are injective.

These facts are particularly useful when one attempts to show the vanishing of o, since the
cohomology group itself rarely vanishes.

Remark 1.4.3. Same as Remark 1.2.4, if S′ = Spec(R′) → S = Spec(R) comes from a small
surjection R→ R′ with kernel I and residue field k, then an identification

Hi(X ′, (f ′)∗I ⊗OX′ TX′/S′) = Hi(X0, TX0/k)⊗k I

can be made, where X0 → Spec(k) = S0 is the base-change of X ′ → S′ along S0 → S′.
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2 Deformation of Abelian Schemes

2.1 Abelian Schemes

We recall the definition and basic properties of abelian schemes.

Definition 2.1. Let C be a locally small category with products and a final object. A group
(or group object) in C is an object G ∈ ob(C) together with a factorisation MorC(−, G) : Cop →
(Grp) → (Sets) through the forgetful functor (Grp) → (Sets). We say G is commutative if the
factor hG : Cop → (Grp) lands in the subcategory (Ab) of abelian groups.

A morphism f : G→ G′ between groups in C is called a group homomorphism if hG(T )→ hG′(T )
is a group homomorphism for all T ∈ ob(C).

Remark 2.1.1. For a group G in C, the group operation, identity, and inverse maps on hG(T )
define, by Yoneda Lemma, morphisms mG : G×G→ G, eG : S → G (where S is the final object
of C), and iG : G → G. They satisfy several commutative diagrams corresponding to the usual
group axioms. For example, associativity is given by the commutativity of the diagram

(G×G)×G G×G G

G× (G×G) G×G G

mG×idG

∼=

mG

idG

idG ×mG
mG

Conversely, for any G ∈ ob(C) and any choice of mG, eG and iG satisfying these axioms, we get
a factorisation of MorC(−, G) through (Grp) by giving each MorC(T,G) the structure of a group
via (mG)T , (eG)T and (iG)T .

For f, g : T → G, we write f + g for mG ◦ (f, g), −f for iG ◦ f , 0 for eG ◦ (T → S), and so on.
Of course, + is only commutative when G is.

Definition 2.2. A (commutative) group in C = (Sch/S) is called a (commutative) group scheme
over S. An abelian scheme over S is a group scheme over S which is smooth, proper, and
geometrically connected on every fibre. An abelian scheme over a field is called an abelian
variety.

Remark 2.1.2. Suppose G→ S is a group scheme and S′ → S is a morphism, then G×S S
′ → S′

has the natural structure of a group scheme via hG′ = hG ◦ bop where b : (Sch /S′) → (Sch /S)
sends X ′ → S′ to the composite X ′ → S′ → S. Since the extra properties defining an abelian
scheme are all stable under base-change, G′ → S′ is an abelian scheme whenever G→ S is.

The properness of abelian schemes has strong consequences due to the following result:

Theorem 2.1.1 (Mumford’s Rigidity Lemma). Suppose S is connected and locally Noetherian,
p : X → S is proper, flat, and geometrically integral on every fibre, q : Y → S is separated, and
f : X → Y is an S-morphism such that f(Xs) is a single point for some s ∈ S. Then q has a
section η : S → Y with η ◦ p = f .

Proof. This is a slightly weaker version of [10, Proposition 6.1].

Corollary 2.1.2. Let p, q be as in Theorem 2.1.1, and suppose in addition that q : Y → S is in
fact a group scheme over S. If f, g : X → Y are S-morphisms such that fs = gs for some s ∈ S,
then q has a section η : S → Y with f = η ◦ p+ g.

Proof. f − g = f + (−g) maps Xs to the image of the unit section of the group scheme Ys →
Spec(κ(s)), so we invoke Theorem 2.1.1 to conclude.
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Corollary 2.1.3. Suppose p : X → S is proper, flat, and geometrically integral on every fibre,
q : Y → S is a connected, locally Noetherian S-scheme admitting a section ϵ : S → Y . Suppose
G is a separated group scheme over S and F : X ×S Y → G is an S-morphism, then there are
FX : X → G and FY : Y → G such that F = FY ◦ pr2 +FX ◦ pr1.

Proof. Consider the Y -morphisms f, g : X ×S Y → G ×S Y , where f = (F,pr2) and g is the
base-change of FX = F ◦ (idX , ϵ ◦ p). Pick any s ∈ S, then fϵ(s) = gϵ(s). Therefore Corollary
2.1.2 applies, and we take FY to be η composed with the first projection G×S Y → G.

For the rest of this section we fix a locally Noetherian base scheme S.

Theorem 2.1.4. Suppose X → S is an abelian scheme, G → S is a separated group scheme,
and f : X → G is an S-morphism such that f ◦ eX = eG. Then f is a group homomorphism.

Proof. When X is connected, this follows from Corollary 2.1.3 with F = f ◦mX .

In general, we use the fact that connected components of locally Noetherian schemes are open
(cf. [13, Lemma 0819]). So X is a disjoint union X =

∐
iXi of connected open subschemes Xi.

Let Si = e−1
X (Xi), then S =

∐
i Si is a disjoint union of open subschemes. Note that Si are

nonempty since eX is a section. Pulling each Si back along the structure map of G gives open
subschemes Gi ⊂ G whose disjoint union is G.

We now base-change along the open immersions Si → S. In view of Remark 2.1.2, Xi → Si

is an abelian scheme, Gi → Si is a separated group scheme, and the group structures on both
come from restrictions.

f restricts to an S′-morphism fi : Xi → Gi sending eXi to eGi . By the connected case, we know
that each fi is a group homomorphism. So f is also a group homomorphism.

Corollary 2.1.5. Any abelian scheme is commutative.

Proof. Apply Theorem 2.1.4 to iX : X → X.

Corollary 2.1.6. For any section e : S → X of an S-scheme X, there is at most one group law
m : X ×X → X making X an abelian scheme with identity e.

Proof. For any two such group law, apply Theorem 2.1.4 to idX .

Lastly, we mention some facts about projectivity of abelian schemes.

Theorem 2.1.7. (i) If S = Spec(A) for a normal domain A, then every abelian scheme over S
is projective. In particular, every abelian variety is projective.

(ii) For any affine S, any abelian scheme over S has the finite-affine property: Any finite set of
points is contained in an affine open.

Proof. [3, pp. 5 – 7].

2.2 Lifting across Artinian Local Rings

Let i : S′ = Spec(R′) → S = Spec(R) be a closed immersion of Noetherian affine schemes such
that the ring map R → R′ has square-zero kernel I ≤ R. We are interested in the following
question: Given an abelian scheme X ′ → S′, can we always lift it to an abelian scheme X → S?

The first step is to lift X ′ to a smooth scheme.

Proposition 2.2.1. Any abelian scheme X ′ → S′ has a smooth lifting X → S. Moreover, any
smooth lifting of it is proper and geometrically connected on every fibre.
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Proof. In view of Theorem 1.4.1, we seek the vanishing of o(X ′, i).

From Remark 1.4.2(ii), o(X ′ ×S′ X ′, i) = i1(o(X
′, i)) + i2(o(X

′, i)). On the other hand, if we
apply the shearing automorphism X ′ ×S′ X ′ → X ′ ×S′ X ′ which on T -valued points is defined
by (x, y) 7→ (x+ y, y), we get o(X ′ ×S′ X ′, i) = i1(o(X

′, i)) + 2i2(o(X
′, i)) by Remark 1.4.2(i).

Therefore i2(o(X
′, i)) = 0, hence o(X ′, i) = 0. This gives the existence of a smooth lifting. The

next part follows from Lemma 1.3.1.

This of course is not good enough: We still want to lift the group structure. The description
in Remark 2.1.1 is convenient for this purpose, as we have already established an obstruction
theory about lifting morphisms in Theorem 1.2.2.

The unit section eX′ : S′ → X ′ can always be lifted to an S-morphism eX : S → X (i.e. a section
of X → S) by Proposition 1.1.2 and Remark 1.2.3. By Corollary 2.1.6, eX determines at most
one group structure on X.

Finding one such group structure, however, requires intricate work. We shall first discuss the
simpler case where R → R′ is a small surjection of Artinian local rings. In this case, S and S′

are both just one-point schemes.

Theorem 2.2.2. Suppose R → R′ is a small surjection of Artinian local rings. Then X → S
has a group structure with unit section eX .

Proof. Note that X ′ ×S′ X ′ → X ×S X is a closed immersion with square-zero ideal. This
inspires us to try and lift µ′ : X ′ ×S′ X ′ → X ′ given by (x, y) 7→ x− y.
Let k = R/mR = R′/mR′ and write S0 = Spec(k), X0 = X ′ ×S′ S0. Note that X0 is an abelian
variety by Remark 2.1.2. Let µ0 : X0 ×k X0 → X0 be the base-change of µ′.

By Theorem 1.2.2 and Remark 1.2.4, the obstruction o to the existence of such a lifting is
naturally an element of H1(X0 ×k X0, µ

∗
0Θ)⊗k I, where Θ = TX0/k.

Θ is in fact trivial, since any tangent vector v at the identity of X0 gives rise to a global section
of Θ by left-translation (cf. [9, p. 42, (iii)]). We write Θ = OX0

⊗k V where V = H0(X0,Θ). By
the Künneth formula (cf. [13, Lemma 0BED]) and the fact that H0(X0,OX0

) ∼= k,

H1(X0 ×k X0, µ
∗
0Θ)⊗k I ∼= H1(X0 ×k X0,OX0×kX0

)⊗k V ⊗k I

∼=
(
pr∗1H

1(X0,OX0)⊕ pr∗2H
1(X0,OX0)

)
⊗k V ⊗k I.

Let g1, g2 : X ′ → X ′ ×S′ X ′ be given by x 7→ (x, eX′) and x 7→ (x, x), respectively. Write (g1)0,
(g2)0 for their base-change to S0. Then pri ◦(gi)0 = idX0 . So the vanishing of o would follow
from the vanishing of (gi)

∗
0o.

By Remark 1.2.5, (gi)
∗
0o is the obstruction to the existence of a lifting of µ′ ◦ gi : X ′ → X ′. But

such a lifting does exist for both: idX lifts µ′ ◦ g1, and eX ◦ (X → S) lifts µ′ ◦ g2. So these
obstructions must vanish, therefore o vanishes, i.e. µ′ lifts to some µ : X ×S X → X.

Of course, only one such choice could possibly work. To make the choice, observe the following:
The set of liftings µ of µ′ is a (V ⊗k I)-torsor by Theorem 1.2.2. On the other hand, if µ is any
such lifting, then µ◦∆X lifts µ′ ◦∆X′ . But the set of liftings of µ′ ◦∆X′ is also a (V ⊗k I)-torsor
again by Theorem 1.2.2, so the map µ 7→ µ◦∆X establishes a bijection between the set of liftings
of µ′ and the set of liftings of µ′ ◦∆X′ = eX′ ◦ (X ′ → S′). In particular, there is a unique lifting
µ of µ′ satisfying µ ◦∆X = eX ◦ (X → S).

We set iX(x) = µ(eX , x) and mX(x, y) = µ(x, iX(y)) for T -valued points x, y. The desired group
axioms all take the form h1 = h2, where hi : X̃ = X×S · · ·×SX → X are morphisms built from
µ, eX , diagonal, projections, and identity, and they satisfy hi ◦ (eX , . . . , eX) = eX .

Since µ0(x, y) = x − y, h1 = h2 always holds after base-change to S0, therefore the image
of µ ◦ (h1, h2) is a single point. By Theorem 2.1.1, there is a section η : S → X such that
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µ◦ (h1, h2) = η ◦ (X̃ → S). Composing both sides with (eX , . . . , eX) : S → X̃ shows that η = eX
since hi ◦ (eX , . . . , eX) = eX and µ ◦ (eX , eX) = µ ◦∆X ◦ eX = eX ◦ (X → S) ◦ eX = eX .

Now consider the commutative diagram

X X ×S X

S X

∆X

µ

eX

The induced map X → (X ×S X) ×µ,eX S becomes an isomorphism after base-change to S′

(since µ′(x, y) = x− y), hence is itself an isomorphism by Lemma 1.3.3. Therefore this diagram
is in fact Cartesian, which means that (h1, h2) factors through ∆X , i.e. h1 = h2.

Corollary 2.2.3. Suppose R→ R′ is a small surjection of Artinian local rings, then any abelian
scheme over R′ lifts to an abelian scheme over R.

Such a lifting, in fact, exists for any surjection of (Noetherian) rings R → R′ with nilpotent
kernel. Before discussing this more general case, let’s first try to analyse the set of liftings in
this special case while we’re at it.

2.3 The Local Moduli

For a ring map B → A and a B-scheme X (or, in general, a functor X : (Sch/B)op → (Sets)), we
write X⊗BA for X×Spec(B) Spec(A). For a B-morphism f , we write f ⊗BA for its base-change
to Spec(A).

Fix a field k and a complete local Noetherian ring W with residue field W/mW = k. We write
(Art/W ) for the category whose objects are Artinian local W -algebras R such that W → R is
local and the induced map on residue fields k =W/mW → R/mR is an isomorphism, and whose
morphisms are (necessarily local) W -homomorphisms.

Clearly, if W ′ is another complete local Noetherian ring and W → W ′ is a local homomor-
phism which induces an isomorphism on residue fields, then (Art/W ′) may be regarded as a full
subcategory of (Art/W ). In particular, (Art/W ) contains (Art/k) as a full subcategory.

Example 2.3.1. k[ϵ]/(ϵ2) is an object of (Art/W ).

Fix an abelian variety X0 over k. Following [11, p. 273], we consider the local moduli functor
M = MX0

: (Art/W )→ (Sets) defined as follows: For any object R in (Art/W ), we set

M (R) = {isomorphism classes of pairs (X,ϕ) such that

X is an abelian scheme over R and ϕ : X ⊗R k → X0 is an isomorphism};

and for any homomorphism f : R → R′ in (Art/W ), we set M (f) to be the function that
takes [(X,ϕ)] ∈ M (R) to [(X ⊗R R′, ϕ)] ∈ M (R′) where we make the natural identification
(X ⊗R R

′)⊗R′ k = X ⊗R k.

By what we have discussed in the previous section, lifting abelian schemes is the same as lifting
the underlying smooth schemes. More precisely,

Lemma 2.3.1. Let π : R → R′ be a small surjection in (Art/W ). For any [(X ′, ϕ)] ∈M (R′),
we have a natural bijection κ : M (π)−1([(X ′, ϕ)])→ L (X ′,Spec(π)) (cf. Theorem 1.4.1).

Proof. Suppose M (π)([(Y, ψ)]) = [(X ′, ϕ)]. By definition, there exists an isomorphism ψ♭ :
Y ⊗R R

′ → X ′ of abelian schemes such that ϕ ◦ (ψ♭ ⊗R′ k) = ψ. We set κ([(Y, ψ)]) = [(Y, ψ♭)] ∈
L (X ′,Spec(π)).
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This is well-defined, for if a different ψ̃♭ was chosen, then ψ̃♭ ◦ (ψ♭)−1 is an automorphism of the
abelian scheme X ′ whose base-change to k is the identity on X0. So it must be the identity on
X ′ by Corollary 2.1.2, i.e. ψ̃♭ = ψ♭.

κ is surjective by Theorem 2.2.2. To see that it is also injective, suppose κ([(Y, ψ)]) = κ([(Z, µ)]),
then there is an isomorphism of schemes b : Y → Z such that µ♭ ◦ b = ψ♭. So µ ◦ (b⊗R k) = ψ.

Consider h = b− b ◦ eY ◦ fY : Y → Z where fY , eY are the structure morphism and unit section
of Y , respectively. Then h ◦ eY = eZ is the unit section of Z, hence h is a homomorphism by
Corollary 2.1.4.

Since µ and ψ are both homomorphisms, we must have µ ◦ (h ⊗R k) = ψ. From this, we also
know that h ⊗R k is an isomorphism, so h must be an isomorphism as well by Lemma 1.3.3.
Therefore [(Y, ψ)] = [(Z, µ)].

Another consequence of what we’ve done is that, if we view (Art/W )op as a full subcategory of
(Sch/W ), then:

Proposition 2.3.2. M is formally smooth (cf. Definition 1.4).

Proof. Due to Corollary 2.2.3, it suffices to show that any surjection of Artinian local rings
(necessarily with nilpotent kernel) is a composite of small surjections.

Suppose R is any Artinian local ring and I ⪇ R is any ideal. Choose N such that mN
R = 0, then

R → R/I factors as a composite R → R/(mN−1
R I) → R/(mN−2

R I) → · · · → R/(mRI) → R/I of
small surjections.

For any functor defined on a category of algebras, one of the most important questions one can
ask is whether the functor is representable. This is not quite the case for M , but we have the
next best thing.

Denote by (ProArt/W ) the category whose objects are complete local Noetherian W -algebras
O such that O/mr

O is an object of (Art/W ) for all r ≥ 1, and whose morphisms are local
W -homomorphisms. It is immediate that (Art/W ) is a full subcategory of (ProArt/W ).

Example 2.3.2. Any formal power series ring over W is an object of (ProArt/W ).

Definition 2.3. A functor F : (Art/W ) → (Sets) is pro-representable by an object O of
(ProArt/W ) if it is naturally isomorphic to Hom(ProArt/W )(O,−)|(Art/W ).

Theorem 2.3.3. M is pro-representable by O =W [[t1,1, . . . , tg,g]] where g = dimX0.

To prove this theorem, we need some general theory surrounding pro-representability.

Definition 2.4. Let C be a category with fibre products and a final object S. A functor
F : C → (Sets) is left-exact if F (S) = {∗} and the natural map F (X×Y Z)→ F (X)×F (Y ) F (Z)
is a bijection.

Suppose F is a left-exact functor on (Art/W ). Then F (k[ϵ]/(ϵ2)) has the natural structure of a k-
vector space. Indeed, we can set the zero element to be the image of {∗} = F (k)→ F (k[ϵ]/(ϵ2)).
Any λ ∈ k acts on F (k[ϵ]/(ϵ2)) via the ring homomorphism k[ϵ]/(ϵ2)→ k[ϵ]/(ϵ2), a+bϵ 7→ a+bλϵ.
And addition is given by the map F (k[ϵ]/(ϵ2)) × F (k[ϵ]/(ϵ2)) = F (k[ϵ]/(ϵ2) ×k k[ϵ]/(ϵ

2)) →
F (k[ϵ]/(ϵ2)) via k[ϵ]/(ϵ2)×k k[ϵ]/(ϵ

2)→ k[ϵ]/(ϵ2), (a+ bϵ, a+ b′ϵ) 7→ a+ (b+ b′)ϵ.

Theorem 2.3.4 (Schlessinger’s Criterion). A functor F : (Art/W )→ (Sets) is pro-representable
if (and only if) it is left-exact and dimk F (k[ϵ]/(ϵ

2)) = m < ∞. And it suffices to check left-
exactness for fibre products of the form R×R′ T where R→ R′ is a small surjection.

If in addition F is formally smooth, then it is pro-representable by O ∼=W [[t1, . . . , tm]].

Proof. [12, Theorem 2.11, Proposition 2.5].
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Proof of Theorem 2.3.3. We will show that M satisfies the conditions listed in Theorem 2.3.4.

Left-exactness: M (k) = {[(X0, idX0
)]} by definition. Now suppose R→ R′ is a small surjection

and T → R′ is any morphism in (Art/W ). Write Q = R ×R′ T and label the morphisms as in
the following diagram.

Q R

T R′

χ

ρ π

Then ρ is surjective since π is, and its kernel is J = I × {0} where I = kerπ. In particular,
mQ · J = (mR ×mR′ mT ) · (I × {0}) = 0, i.e. ρ is a small surjection.

We need to show that the natural map M (Q)→M (R)×M (R′) M (T ) is a bijection. Since the
source is nonempty (cf. Proposition 2.3.2), the target has to as well.

Choose any ([(Y, ψ)], [(X,ϕ)]) ∈ M (R) ×M (R′) M (T ) and let [(X ′, ϕ)] = M (π)([(X,ϕ)]). In
view of Lemma 2.3.1, Theorem 1.4.1 (combined with Proposition 2.2.1), and Remark 1.4.3, we
see that M (χ) restricts to a bijection

M (ρ)−1([(Y, ψ)]) L (Y,Spec(ρ)) H1(X0, TX0/k)⊗k I

M (π)−1([(X ′, ϕ)]) L (X ′,Spec(π)) H1(X0, TX0/k)⊗k J

κ
∼

M (χ)

∼

id⊗χ|I

∼

∼
κ

∼

which is precisely what we need.

Dimension of M(k[ϵ]/(ϵ2)): By Theorem 1.4.1, we have a linear isomorphism M(k[ϵ]/(ϵ2)) ∼=
H1(X0, TX0/k)⊗k (kϵ) ∼= H1(X0, TX0/k).

Same as in the proof of Theorem 2.2.2, we have TX0/k
∼= OX0

⊗k V where V = H0(X0, TX0/k)
has dimension g = dimX0. So dimkM(k[ϵ]/(ϵ2)) = g dimH1(X0,OX0

) = g2 by [9, p. 129,
Corollary 2].

Formal smoothness: Proposition 2.3.2.

2.4 Lifting in General

Let’s finish what we left off and prove Corollary 2.2.3 more generally.

Theorem 2.4.1 (Grothendieck). Suppose R→ R′ is any surjection of (Noetherian rings) with
nilpotent kernel. Then any abelian scheme over R′ lifts to an abelian scheme over R.

Similar to what we did in the proof of Corollary 2.1.4, the assertion can be reduced to the
connected case: Suppose i : S′ → S is a closed immersion of Noetherian schemes with nilpotent
kernel. Then S =

∐
j Sj is a disjoint union of open subschemes by [13, Lemma 0819]. Write S′

j

for Sj ×S S
′, then S′ =

∐
j S

′
j too is a disjoint union of open subschemes.

Suppose any abelian scheme over S′
j lifts to an abelian scheme over Sj for all j. For any abelian

scheme X ′ → S′, the open subscheme X ′
j = X ′ ×S′ S′

j is an abelian scheme over S′
j for each j

and X ′ =
∐

j X
′
j . Lift X ′

j → S′
j to Xj → Sj . Then X =

∐
j Xj →

∐
j Sj = S is an abelian

scheme lifting X ′ → S′.

By Proposition 2.2.1, to show Theorem 2.4.1, it suffices to establish:

Theorem 2.4.2. Let S be a connected Noetherian scheme and X → S be a proper smooth
morphism equipped with a section e = eX : S → X. If, for some s : Spec(k) → S, the fibre Xs

is an abelian variety with unit section e ◦ s, then X → S can be made an abelian scheme with
unit section e.

For simple cases, this is entirely classical.

15

https://stacks.math.columbia.edu/tag/0819


Theorem 2.4.3 (Koizumi). Theorem 2.4.2 is true if S is the spectrum of a valuation ring, and
s is the generic point of S.

Proof. [7, Theorem 3].

Let’s now see how one might prove Theorem 2.4.2 in general.

To giveX → S the structure of an abelian scheme with unit eX is the same as to give a morphism
µ : X ×S X → X such that iX(x) = µ(eX , x), mX(x, y) = µ(x, iX(y)), and eX together satisfy
various group axioms as in Remark 2.1.1. These axioms translate to identities involving µ, e,
diagonal, projections, and identity. In order to find µ, we seek the aid of a global deformation
functor.

Definition 2.5. LetX, Y be S-schemes. Write (LNSch/S) for the category of locally Noetherian
S-schemes. We define the functor MorS(X,Y ) : (LNSch/S)op → (Sets) by assigning to each S-
scheme T the set

MorS(X,Y )(T ) = {T -morphisms X ×S T → Y ×S T}

and to each T ′ → T the function that takes f ∈ MorS(X,Y )(T ) to its base-change to T ′.

When X is projective and flat and Y is quasi-projective, MorS(X,Y ) is representable by a
quasi-projective scheme by the theory of Hilbert schemes (cf. [4, Theorem 5.23]). In general,
MorS(X,Y ) is not always representable by a scheme, but we still have:

Theorem 2.4.4. Suppose X is flat, proper, and of finite presentation over S, and Y is sepa-
rated and of finite presentation over S, then MorS(X,Y ) is an algebraic space locally of finite
presentation over S.

Proof. [13, Proposition 0D1C].

We shall not discuss the theory of algebraic spaces in detail, since it is beyond the scope of this
essay. A comprehensive reference can be found in [13, Part 0ELT].

Proposition 2.4.5. Suppose we are in the situation of Theorem 2.4.2. Consider the functor
F : (LNSch/S)op → (Sets) sending each f : T → S to

F (T ) = {structures of an abelian scheme on X ×S T with unit (e ◦ f, idT )}

and each S-morphism T ′ → T to the corresponding map given by base-change. Then F is
representable by an open subscheme U ⊂ S.

Proof. As discussed above, to give a structure of an abelian scheme on XT = X ×S T with unit
(e ◦ f, idT ) is the same as to give µT : XT ×T XT → XT satisfying various identities involving
µT , e ◦ f , diagonal, projections, and identity.

These identities cut out a closed algebraic subspace Z ↪→ MorS(X,Y ), with the property that
µT ∈ MorS(X,Y )(T ) gives a structure of an abelian scheme on XT with unit e ◦ f if and only
if the corresponding morphism T → MorS(X,Y ) factors through Z. Hence Z represents F .

The morphism ω : Z ↪→ MorS(X,Y ) → S is smooth by a version of Proposition 1.1.3 for
algebraic spaces (cf. [13, Lemma 0APN]) and Theorem 2.2.2. We also know that Z(T ) = F (T )
has at most one point for any locally Noetherian S-scheme T due to Corollary 2.1.6, so ω has
to be a monomorphism.

But any flat monomorphism between algebraic spaces is representable by schemes (cf. [13, Lemma
0B8A])! So Z is in fact a scheme, and ω is an open immersion by [13, Theorem 025G].

Proof of Theorem 2.4.2. This open immersion U ⊂ S is also universally closed by Theorem 2.4.3
and the valuative criterion (cf. [13, Proposition 01KF]). Since S is connected and F (k) ̸= ∅, we
must have U = S. In particular, F (S) ̸= ∅.
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3 The Serre-Tate Theorem

3.1 Formal Completions

The description of the local moduli M in Theorem 2.3.3 is non-canonical, in the sense that we
have no natural choice of coordinates t1,1, . . . , tg,g. To understand M further, we would have
to find a way to describe the liftings using some intrinstic data of abelian schemes. This is the
content of Serre-Tate theory.

For the rest of this essay, whenever we mention a group of any kind, we will automatically mean
a commutative group.

First, let’s analyse infinitesimal behaviours of an fppf sheaf. Fix a locally Noetherian base scheme
S. We write (Sch/S)fppf for the big fppf site of schemes over S, and (Aff/S)fppf for the big affine
fppf site.

We first remark that the categories of sheaves on (Sch/S)fppf and (Aff/S)fppf are equivalent via
the natural restriction functor (cf. [13, Lemma 021V]). So we may, and will, talk about sheaves
on these two sites as if they were the same thing.

Definition 3.1. Suppose X is a sheaf of sets on (Sch/S)fppf and Y is a subsheaf of X. The j-th

infinitesimal neighbourhood of Y in X is the subsheaf InfjY (X) of X defined by

Γ(T, InfjY (X)) = {t ∈ Γ(T,X) : there exists an fppf cover {Ti → T}i∈I and

closed subschemes T ′
i ↪→ Ti with Ij+1

T ′
i/Ti

= 0 such that tT ′
i
∈ Γ(T ′

i , Y )}

It’s clear that InfjY is a subsheaf of Infj+1
Y in the natural way. So what we have is a directed

system of subsheaves Inf1Y (X) ↪→ Inf2Y (X) ↪→ Inf3Y (X) ↪→ · · · of X.

In familiar situations, this definition simplifies to the following:

Lemma 3.1.1. When X is a scheme and Y is a closed subscheme of X, then InfjY (X) is

representable by the closed subscheme of X cut out by the ideal Ij+1
Y/X .

Proof. [8, Ch. II, Lemma (1.02)].

Definition 3.2. The formal completion of an fppf sheaf X along a subsheaf Y is the subsheaf
InfY (X) = lim−→j

InfjY (X) of X, where the colimit is taken in the category of fppf sheaves.

It is perhaps enlightening to work out what actually happens when a colimit of this form is taken.
By the universal properties, the colimit of a diagram of fppf sheaves is simply the sheafification
of the colimit taken in the presheaf category. In fact, the sheafification process does almost
nothing:

Lemma 3.1.2. Suppose Y1 ↪→ Y2 ↪→ Y3 ↪→ · · · is a directed system of fppf sheaves. Then
Γ(T, lim−→j

Yj) = lim−→j
Γ(T, Yj) for any quasicompact S-scheme T .

Proof. This is a special case of [13, Lemma 0738].

This in particular works for any affine T . Therefore such a description completely characterises
the resulting colimit.

Definition 3.3. Suppose X̂ is an fppf sheaf of groups. Its completion is X̂ = InfS(X) where S
is regarded as a subsheaf of X via the inclusion of the identity.

Clearly X̂ is a subgroup of X (cf. [8, Ch. II, Lemma (1.1.6)]).
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Let us now take X = G where G is a smooth separated group scheme over S (e.g. an abelian
scheme over S). Since G is separated, its unit section is a closed immersion. So we are in the
familiar situation of Lemma 3.1.1.

Recall that the completion of a scheme along a closed subscheme is representable by a formal
scheme. This process preserves products, so Ĝ is representable by a formal group, i.e. a group
in the category (FmlSch/S) of formal schemes over S.

More precisely (or rather, pedantically), there is a formal group G, obtained by completing G
along the closed subscheme defined by its unit section, such that Ĝ ∼= hG|(Sch/S)op .

It turns out that the smoothness of G gives rise to a surprisingly simple description of G as a
formal scheme.

Proposition 3.1.3. S can be covered by open affines S =
⋃

i Spec(Ri) such that, for each i,
there is an isomorphism of formal Ri-schemes G×S Spec(Ri) ∼= Spf(Ri[[t1, . . . , tr]]) for some r.

Proof. Combine [2, IV4, Corollaire (16.9.9)] and [2, IV4, Théorème (17.12.1)(c’)].

We therefore make the following definition.

Definition 3.4. A formal Lie group over a Noetherian ring R is a formal group over R which
is isomorphic, as a formal scheme, to Spf(R[[t1, . . . , tr]]) for some r.

An fppf sheaf H of groups over R is representable by a formal Lie group if H ∼= hH|(Sch/R)op for
some formal Lie group H over R.

An fppf sheaf H of groups over a locally Noetherian base S is locally representable by a formal
Lie group if S can be covered by open affines S =

⋃
i Spec(Ri) such that H ×S Spec(Ri), viewed

as an fppf sheaf of groups over Ri, is representable by a formal Lie group.

So Proposition 3.1.3 implies that Ĝ is always locally representable by a formal Lie group.

The structure of a formal Lie group is quite easy to understand. Fix a Noetherian base ring
R and a formal Lie group H over R. Choose an isomorphism H ∼= Spf(R[[t1, . . . , tr]]). Then
H× H ∼= Spf(R[[x1, . . . , xr, y1, . . . , yr]]). So we have

Mor(FmlSch/R)(H× H,H) = Mor(FmlSch/R)(Spf(R[[x1, . . . , xr, y1, . . . , yr]]),Spf(R[[t1, . . . , tr]]))

= Homcont.(R[[t1, . . . , tr]], R[[x1, . . . , xr, y1, . . . , yr]])

Hence the multiplication map m : H × H → H gives rise to a continuous homomorphism m♯ :
R[[t1, . . . , tr]]→ R[[x1, . . . , xr, y1, . . . , yr]].

Definition 3.5. The tuple of formal power series

F = FH = (m♯(t1), . . . ,m
♯(tr)) ∈ R[[x1, . . . , xr, y1, . . . , yr]]⊕r

is called a formal group law associated to H.

For simplicity, we will write x for (x1, . . . , xr), y for (y1, . . . , yr), and so on. It is immediate
that F (x, y) ≡ x+ y + (terms of degree ≥ 2), F (x, F (y, z)) = F (F (x, y), z), F (x, y) = F (y, x),
and F (x, 0) = F (0, x) = x. Conversely, given any tuple of formal power series satisfying these
conditions, we recover a group structure on Spf(R[[t]]) by considering the corresponding m♯.

For any S-scheme T , hH(T ) has underlying set Homcont.(R[[t]],Γ(T,OT )) = Nil(Γ(T,OT ))
⊕r

where Γ(T,OT ) is endowed with the discrete topology. The group operation is given simply by
x+F y = F (x, y) for x, y ∈ Nil(Γ(T,OT ))

⊕r.

Example 3.1.1. Let Gm/R = Spec(R[t, t−1]) be the multiplicative group. Then its completion

Ĝm/R (the formal multiplicative group) has formal group law F (x, y) = (x + 1)(y + 1) − 1 =
x+ y + xy.

18



3.2 p-Divisible Groups

Fix a locally Noetherian base scheme S.

Definition 3.6. A morphism f : X → S is finite flat if it is finite and flat.

By [13, Lemma 02KB], this is equivalent to saying that f is finite locally free.

Since finite morphisms are affine, any finite flat f : X → S is of the form SpecOS
(A)→ S where

A = f∗OX is a quasicoherent OS-(Hopf )algebra which is finite locally free when viewed as an
OS-module.

Definition 3.7. The rank rankS(X) : S → Z≥0 of a finite flat morphism f : X → S is the rank
of the finite locally free OS-module A = f∗OX , considered as a locally constant function on S.

Definition 3.8. A finite flat group scheme G over S is a group scheme over S such that G→ S
is finite flat.

Example 3.2.1. For a group-valued functor X and an integer n ∈ Z, we have a multiplication-
by-n homomorphism [n] = [n]X : X → X. We denote its kernel by X[n]. Of course X[n] is a
scheme (resp. an fppf sheaf) if X is.

Suppose now that X → S is an abelian scheme of relative dimension g (cf. Definition 1.3). When
S is the spectrum of a field, it follows from the theory of abelian varieties that [n] is finite flat
of rank n2g (cf. [13, Lemma 0BFG]). It is in fact faithfully flat by [13, Proposition 03RP].

For general S, we see from this special case that [n] has finite fibres. But [n] is also proper since
it is a morphism between proper schemes, so it must be finite (cf. [13, Lemma 02LS]). On the
other hand, [n] is also faithfully flat since this can be checked on fibres (cf. [13, Lemma 039E]).
So [n] is finite and faithfully flat. It has rank n2g since we can check this on fibres as well.

The kernel X[n]→ S, as a base-change of [n], is then a finite flat group scheme of rank n2g.

From now on we fix a prime p.

Definition 3.9. A p-divisible group (or a Barsotti-Tate group) over S is an fppf sheaf of groups
over S that takes the form G = lim−→j

Gj where 0 = G0 ↪→ G1 ↪→ G2 ↪→ G3 ↪→ · · · is a directed

system of finite flat group schemes over S such that:

(i) Gj ↪→ Gj+1 is the composition of the closed immersion Gj+1[p
j ] ↪→ Gj+1 and an isomorphism

Gj → Gj+1[p
j ] of group schemes. In particular, [pi] : Gj → Gj factors through Gj−i.

(ii) For all 0 ≤ i ≤ j, the sequence

0 Gi Gj Gj−i 0
[pi]

is exact in the category of fppf sheaves of groups.

Of course, such a directed system may be recovered from the p-divisible group via Gj = G[pj ].

Note that (ii) is really asserting the faithful flatness of [pi] : Gj → Gj−i by [8, Ch. I, Lemma
(1.5)(b)]. It also clearly suffices to check the cases where i = 1.

Example 3.2.2. For an abstract group Γ, we write ΓS =
∐

g∈Γ S for the constant group scheme
over S associated to Γ. For any S-scheme T , ΓS(T ) is the abelian group of locally constant
functions |T | → Γ, with the latter given the discrete topology.

Then the p-divisible group associated to the system

0 Z/pZ
S

Z/p2Z
S

· · ·17→p 1 7→p

is representable by Qp/Zp
S
. p-divisible groups isomorphic to a finite direct sum of copies of it

are called constant p-divisible groups over S.
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Example 3.2.3. For a ring R and an integer N , consider the group scheme µN/R = ker[N ]Gm/R
.

For any R-algebra A, µN/R(A) is the abelian group {x ∈ A : xN = 1} under ring multiplication.
The p-divisible group associated to the system

0 µp/R µp2/R · · ·

is denoted µp∞/R. p-divisible groups isomorphic to a finite direct sum of copies of it are called
toroidal p-divisible groups over R.

Now suppose p is nilpotent in R (say pr = 0). Then µp∞/R(A) = 1+Nil(A) for any R-algebra A.

Indeed, suppose xp
t

= 1, then x̄p
t

= 1 where x̄ = x+Nil(A) ∈ A0 = A/Nil(A). But p is zero in
A0, so x̄ = 1 as A0 is torsion-free, i.e. x ∈ 1+Nil(A). Conversely, suppose x = 1+y ∈ 1+Nil(A).

Choose s such that yp
s

= 0, then xp
r+s

= 1. Thus x ∈ µp∞/R(A).

In other words, µp∞/R is representable by the formal Lie group Ĝm/R (cf. Example 3.1.1).

To justify the terminology, we recall the following definition:

Definition 3.10. An fppf sheaf G of groups over S is N -divisible if [N ] : G→ G is a surjective
morphism of fppf sheaves.

Example 3.2.4. Any p-divisible group is p-divisible by part (ii) of Definition 3.9.

Example 3.2.5. For any abelian scheme X and any N , [N ] : X → X is fppf, therefore surjective
as a map of fppf sheaves. So any abelian scheme is N -divisible.

Proposition 3.2.1. Suppose G is a p-divisible fppf sheaf of groups over S such that G[pj ] is
representable by a finite flat group scheme for all j ≥ 1. Then G[p∞] = lim−→j

G[pj ] is a p-divisible

group over S.

Proof. The only nontrivial part is to show that [p] : G[pj ] → G[pj−1] is a surjective morphism
of sheaves. This follows from p-divisibility: For any S-scheme U and any s ∈ Γ(U,G[pj−1]) ⊂
Γ(U,G), we know that there is an fppf cover {Ui → U} and ti ∈ Γ(Ui, G) such that [p]ti = s|Ui

for each i. But then [pj ]ti = [pj−1]s|Ui = 0, so ti ∈ Γ(Ui, G[p
j ]).

Remark 3.2.1. In fact, we only need to assume that G[p] is representable by a finite flat group
scheme. Indeed, the exact sequence holds by our argument, so each G[pj ] comes from a sequence
of extensions of finite flat group schemes, which forces it to be a finite flat group scheme as well.

Remark 3.2.2. This construction is functorial: Any homomorphism f : G→ G′ of fppf sheaves of
groups restricts to homomorphisms G[pj ]→ G′[pj ], hence a homomorphism f [p∞] : lim−→j

G[pj ]→
lim−→j

G[pj ].

There is an intimate connection between p-divisible groups and formal Lie groups, as charac-
terised by the following theorem.

Theorem 3.2.2 (Grothendieck-Messing). Suppose S = Spec(R) is affine with p nilpotent in
R. Then any p-divisible group G over S is formally smooth, and Ĝ is locally representable by a
formal Lie group.

Proof. [8, Ch. II, Theorem (3.3.13), Theorem (3.3.18)].

3.3 Drinfeld’s Rigidity Lemma

Fix a Noetherian ring R. Let (Grp/R) be the category of sheaves of groups on (Aff/R)fppf .
Objects of (Grp/R) will be called R-groups.

For any ideal I ≤ R and any functor G : (Aff/R)op → (Ab), we write GI for the subgroup
functor of G defined by GI(A) = ker(G(A)→ G(A/IA)) for any R→ A.

Suppose NR = 0 for some integer N and I ≤ R is an ideal with Iν+1 = 0 for some ν ≥ 1.
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Lemma 3.3.1. Suppose G is an R-group which is locally representable by a formal Lie group,
then [Nν ]GI = 0.

Proof. Assume, without loss of generality, that G is representable by a formal Lie group. Let
F (x, y) = x+ y+(terms of degree ≥ 2) ∈ R[[x, y]]⊕r be its formal group law. Recall that G(A)
is the set Nil(A)⊕r equipped with the group operation x+F y = F (x, y).

Now let J be any nilpotent ideal of A. As JA ⊂ Nil(A), GJ(A) is just the subgroup (JA)⊕r

(under +F ). For any x ∈ GJ(A),

[N ]x = Nx+ (terms of degree ≥ 2 in x) = (terms of degree ≥ 2 in x) ∈ GJ2(A)

since NR = 0. So [N ]GJ ⊂ GJ2 .

For any a ≥ 1, taking J = Ia shows that [N ]GIa ⊂ GI2a ⊂ GIa+1 . Consequently [Nν ]GI = 0
since Iν+1 = 0.

Corollary 3.3.2. Suppose G is an R-group such that Ĝ is locally representable by a formal Lie
group. Then [Nν ]GI = 0.

Proof. Note that GI is always a subfunctor of the ν-th infinitesimal neighbourhood of G, hence
a subfunctor of Ĝ. So (Ĝ)I(A) = Ĝ(A) ∩GI(A) = GI(A) is annihilated by [Nν ].

Lemma 3.3.3. Suppose H is a formally smooth functor (Aff/R)op → (Ab) such that [P ]HI = 0
for some integer P . Then for any R-algebra A and any set-theoretic section s : H(A/IA) →
H(A) of the surjective map H(A)→ H(A/IA), ⌜P⌟ = [P ] ◦ s is a group homomorphism which
does not depend on the choice of s. Furthermore, ⌜P⌟ is functorial in the sense that, whenever
A→ B is an R-homomorphism, the diagram

H(A) H(A/IA)

H(B) H(B/IB)

⌜P⌟

⌜P⌟

commutes.

Proof. For any x, y ∈ H(A/IA), s(x) + s(y) − s(x + y) lives in HI(A) which is annihilated by
[P ]. So ⌜P⌟ must be a homomorphism. Furthermore, if s′ were another set-theoretic section,
then s− s′ has image in HI(A), so [P ] ◦ s = [P ] ◦ s′.
To show functoriality, consider the commutative diagram

H(A) H(A/IA) 0

H(B) H(B/IB) 0

f

πA

f̄

πB

Take any set-theoretic sections sA of πA and sB of πB . Then πB ◦ f ◦ sA = f̄ ◦ πA ◦ sA = f̄ =
πB ◦ sB ◦ f̄ . This means that the image of f ◦ sA − sB ◦ f̄ lives inside HI(B), which again is
annihilated by [P ]. Thus f ◦ ⌜P⌟ = [P ] ◦ f ◦ sA = [P ] ◦ sB ◦ f̄ = ⌜P⌟ ◦ f̄ .

Write R0 = R/I.

Theorem 3.3.4 (Drinfeld’s Rigidity Lemma). Suppose G and H are R-groups such that G is
N -divisible, Ĥ is locally representable by a formal Lie group, and H is formally smooth. Let R0

be the restriction of G to (Aff/R0)
op (which is simply the base-change of G along R→ R0), and

H0 be that of H.

(i) The groups Hom(Grp/R)(G,H) and Hom(Grp/R0)(G0, H0) have no N -torsion.
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(ii) The natural map Hom(Grp/R)(G,H)→ Hom(Grp/R0)(G0, H0) is injective.

(iii) Whenever f0 : G0 → H0 is a homomorphism, Nνf0 can be lifted to a homomorphism
⌜Nνf⌟ : G→ H (necessarily unique by (ii)).

(iv) f0 : G0 → H0 can be lifted to a homomorphism f : G → H (necessarily unique by (ii)) if
and only if ⌜Nνf⌟ annihilates G[Nν ].

Proof. (i): Immediate from the N -divisibility of G and (hence) G0.

(ii): Suppose f : G→ H is in the kernel of this map, then the diagram

G(A) G(A/IA)

H(A) H(A/IA)

f 0

commutes, which shows that f factors through HI . So N
νf = 0 since [Nν ]HI = 0 by Corollary

3.3.2. But G is N -divisible (hence Nν-divisible), hence f = 0.

(iii) Simply take ⌜Nνf⌟ to be the composite

G(A) G(A/IA) H(A/IA) H(A)
f0 ⌜Nν⌟

for any R-algebra A. This gives a well-defined homomorphism G→ H by Lemma 3.3.3. And it
lifts f0 since IA = 0 whenever A comes from an R0-algebra.

(iv) If f lifts f0, then ⌜Nνf⌟ = Nνf (by (ii)) which annihilates G[Nν ]. Conversely, suppose
⌜Nνf⌟ annihilates G[Nν ], then ⌜Nνf⌟ = F ◦ [Nν ] = NνF for some F : G → H since [Nν ] :
G→ G is surjective (by the N -divisibility of G).

The base-change F0 : G0 → H0 of F then must satisfy NνF0 = Nνf0. But (i) tells us that this
implies F0 = f0. So f = F lifts f0.

3.4 The Serre-Tate Theorem

Suppose we are in the situation of the last section, except with N assumed to be a power of p.

Let (AbSch/R) be the category of abelian schemes over R, and (Def/(R → R0)) the category
of triples (X0, G, ϵ), where X0 is an abelian scheme over R0, G a p-divisible group over R, and
ϵ : G⊗R R0 → X0[p

∞] an isomorphism.

Theorem 3.4.1 (Serre-Tate). The functor (AbSch/R) → (Def/(R → R0)) sending an abelian
scheme X over R to the triple (X⊗RR0, X[p∞], ϵ) (where ϵ is the natural isomorphism X[p∞]⊗R

R0 → (X ⊗R R0)[p
∞]) is an equivalence of categories.

We shall devote the rest of this section to its proof.

Let’s first show that this functor is fully faithful. Note that if G is representable by either an
abelian schemes or a p-divisible groups over R, then G is p-divisible (Example 3.2.4, Example
3.2.5), formally smooth (Theorem 3.2.2, Proposition 1.1.2), and Ĝ is locally representable by a
formal Lie group (Theorem 3.2.2, Proposition 3.1.3). So we may use the various conclusions of
Theorem 3.3.4.

Faithfulness comes from part (ii) of Theorem 3.3.4. As for fullness, we need to show that
whenever X, Y are abelian schemes, and f0 : X ⊗R R0 → Y ⊗R R0, ϕ : X[p∞] → Y [p∞] are
homomorphisms with f0[p

∞] = ϕ ⊗R R0, then there is a homomorphism f : X → Y such that
f ⊗R R0 = f0, f [p

∞] = ϕ.

In view of part (iii) and (iv) of Theorem 3.3.4, we want to show that ⌜Nνf⌟ annihilates X[Nν ].
Since ⌜Nνf⌟ lifts Nνf0, ⌜Nνf⌟[p∞] lifts Nνf0[p

∞] = Nνϕ⊗RR0. But ϕ already lifts ϕ⊗RR0, so
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we must have Nνϕ = ⌜Nνf⌟[p∞] by part (ii) of Theorem 3.3.4. In particular, ⌜Nνf⌟ annihilates
X[Nν ], so we can lift f0 to some f : X → Y . Moreover, Nνϕ = Nνf [p∞] and thus ϕ = f [p∞]
by part (i) of Theorem 3.3.4.

To show essential surjectivity, we import a well-known result about quotients.

Theorem 3.4.2. Let S be a locally Noetherian base scheme. Suppose G is a finite flat subgroup
scheme of a group scheme H such that, for any s ∈ S, the fibre Hs is contained in an open affine
of G. Then the quotient fppf sheaf G/H is representable. Moreover, the quotient morphism
G→ G/H is finite locally free (in particular fppf).

Proof. This is a special case of [13, Proposition 07S6].

Suppose now that (X0, G, ϵ) is an object of (Def/(R→ R0)). We want to find an abelian scheme
over R giving rise to these data.

By Theorem 2.4.1, we can always find an abelian scheme Y over R such that there is an isomor-
phism α0 : Y0 = Y ⊗R R0 → X0. This gives rise to an isomorphism α0[p

∞] : Y0[p
∞]→ X0[p

∞].
Since G lifts X0[p

∞] (via ϵ), part (iii) of Theorem 3.3.4 tells us that we can form Φ : Y [p∞]→ G
and Ψ : G→ Y [p∞] which lift Nνα0[p

∞] and Nνα0[p
∞]−1, respectively.

By part (ii) of Theorem 3.3.4, Φ ◦ Ψ = [N2ν ] and Ψ ◦ Φ = [N2ν ]. In particular, both Φ and Ψ
are surjective morphisms of fppf sheaves, and K = kerΦ is annihilated by [N2ν ]. We write down
the short exact sequence

0 K Y [p∞] G 0Φ

which, by the Snake Lemma, induces an exact sequence

0 K Y [N2ν ] G[N2ν ] K 0.
Φ[N2ν ] ∂ (*)

From the left-hand side of this exact sequence, we see that K is the kernel of a homomorphism
of finite group schemes, hence is itself a finite group scheme. Then from the right-hand side of
the exact sequence, M = ker ∂ too is a finite group scheme. And we have a short exact sequence

0 K Y [N2ν ] M 0π

where π : Y [N2ν ]→M is the unique homomorphism that Φ[N2ν ] factors through.

We claim that π is flat. Since Y [N2ν ] is flat, the fibrewise criterion for flatness (cf. [13, Lemma
039E]) shows that it suffices to check the flatness of π ⊗R R0. But Φ ⊗R R0 is simply [Nν ]
composed with the isomorphism α0[p

∞], so by passing (*) through the base-change we see
that π ⊗R R0 is in fact the homomorphism [Nν ] : Y0[N

2ν ] → Y0[N
ν ] composed with the same

isomorphism, which is (faithfully) flat.

Consequently, K is a finite flat group scheme which lifts Y0[N
ν ]. By Theorem 3.4.2 and Theorem

2.1.7, there is a group scheme X over S representing the fppf quotient Y/K equipped with an
fppf morphism Y → X. Since Y is flat, X must also be flat.

As K lifts Y0[N
ν ], X lifts the fppf quotient Y0/Y0[N

ν ], which is representable by Y0 itself since
[Nν ] : Y0 → Y0 is a surjective morphism of fppf sheaves. So X is a flat lifting of Y0 ∼= X0. Then
X has to be smooth due to [13, Lemma 06AG]. Therefore X is an abelian scheme by Lemma
1.3.1.

We already know that X lifts X0. But also by construction X[p∞] ∼= Y [p∞]/K ∼= G. This
finishes the proof.
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4 Lifting Ordinary Abelian Varieties

4.1 Ordinary Abelian Varieties

We now apply Theorem 3.4.1 to give a canonical description of the local moduli M of an ordinary
abelian variety. Of course, this requires us to first define ordinary abelian varieties.

To start with, let’s recall some basic notions surrounding the theory of finite flat group schemes.

Definition 4.1. Let G = Spec(A) be a finite flat group scheme over a ring R. Its Cartier dual
is the finite flat group scheme DR(G) = Spec(A∨) where A∨ = HomR(A,R) is the dual of the
Hopf algebra A, swapping multiplication and comultiplication.

It’s easy to see that DR(G) represents the functor (Aff/R)op → (Ab) sending an R-algebra B to
Hom(Grp/B)(G⊗RB,Gm/B). From here, it’s clear that DR(G×H) = DR(G)×DR(H), and that
DR commutes with base-change.

In addition, DR ◦DR is naturally isomorphic to the identity functor on the category (FFGrp/R)
of finite flat group schemes over R. In particular, DR provides an equivalence of categories
(FFGrp/R) ∼= (FFGrp/R)op.

Example 4.1.1. For any integer N , µN/R and Z/NZ
R
are dual to each other.

Suppose now that R is Artinian and local.

Definition 4.2. The connected part G◦ of a finite flat group scheme G = Spec(A) is the
connected component of G through which eG factors. The étale part Gét of G is Spec(Aét),
where Aét is the maximal separable subalgebra of A.

It’s easy to see that Gét is étale, and that any homomorphism G→ H where H is a finite étale
group scheme factors uniquely through G→ Gét.

Theorem 4.1.1 (Connected-Étale Sequence). The sequence

0 G◦ G Gét 0

is exact.

Proof. [1, p. 43].

Supose now that R = k is an algebraically closed field. Then a finite group scheme over k is
étale iff it’s reduced iff it’s constant, since the only finite étale scheme over k is a finite disjoint
union of Spec(k). In particular, Gét = Gred is a constant group scheme.

Proposition 4.1.2. Suppose R = k is an algebraically closed field. Then the connected-étale
sequence splits canonically.

Proof. Suppose G = Spec(A) is a finite group scheme over k. Since A is finite over k, it
decomposes into A =

∏
iAi with each Ai local. Write Gi = Spec(Ai). Then G =

∐
iGi, and the

map G→ Gét =
∐

i Spec(k) is simply given by patching together the structure maps of Gi. But
the residue field of Ai equals k as Ai is finite over k, which is algebraically closed. So each of
these structure maps has a unique section given by the residue homomorphism, and they patch
together to give a unique splitting.

Corollary 4.1.3. Suppose k is an algebraically closed field. Then every finite group scheme G
over k decomposes canonically as G = G◦ ×Gét.
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Let’s now use this together with Cartier duality. Let G be a finite group scheme over k. Then

G = G◦ ×Gét = Dk(Dk(G
◦))×Dk(Dk(G

ét))

=
[
Dk(Dk(G

◦)◦)×Dk(Dk(G
◦)ét)

]
×

[
Dk(Dk(G

ét)◦)×Dk(Dk(G
ét)ét)

]
So we may decompose G = G◦,◦×G◦,ét×Gét,◦×Gét,ét where G◦,◦ = Dk(Dk(G

◦)◦) is connected
with connected dual, G◦,ét = Dk(Dk(G

◦)ét) is connected with étale dual, and so on.

By the classification of finite abelian groups, Gét,ét is a product of constant group schemes of
the form Z/ϖmZ

k
for various primes ϖ and integers m ≥ 1. Its dual, which is supposed to be

étale, would then be the product of µϖm/k for these values of ϖ and m.

Suppose now that char k = p > 0. Then µpm/k is not reduced, so none of these ϖ can ever

equal p. Consequently, p ∤ rankk(Gét,ét). If rankk(G) is a power of p (e.g. if G is the p-power
torsion subgroup scheme of an abelian variety), then this means that Gét,ét = 0 is the trivial
group scheme over k.

Now let X0 be an abelian variety over k. X0[p]
ét is a constant group scheme annihilated by p,

so it is isomorphic to (Z/pZ)r
k
= (Z/pZ

k
)r for some r = rX0

. The exact sequence in part (ii) of
Definition 3.9 reduces to

0 X0[p
i]ét X0[p

j ]ét X0[p
j−i]ét 0

[pi]

from which we conclude X0[p
j ]ét ∼= (Z/pjZ)r

k
.

LetXt
0 be the dual abelian variety ofX0. Recall that we have the following fundamental theorem:

Theorem 4.1.4. Suppose f : X0 → Y0 is an isogeny (i.e. finite faithfully flat homomorphism
between abelian varieties), then the kernel of its dual f t : Y t

0 → Xt
0 is canonically isomorphic to

Dk(ker f).

Proof. [9, p. 143].

In particular, Xt
0[p

j ] ∼= Dk(X0[p
j ]). Applying our discussions to Xt

0, we see that there is some
s = sX0 such that Dk(X0[p

j ])ét ∼= (Z/pjZ)s
k
for all j.

Putting these together, we conclude X0[p
j ]ét,ét = 0, X0[p

j ]ét,◦ ∼= (Z/pjZ)r
k
, and X0[p

j ]◦,ét ∼=
Dk((Z/pjZ)sk)

∼= µs
pj/k.

Now, rX0 is invariant under isogeny: Suppose f : X0 → Y0 is an isogeny. It suffices to show
that rX0 ≤ rY0 . f restricts to a homomorphism X0[p

j ]→ Y0[p
j ] for all j, and therefore pjrX0 =

#X0[p
j ](k) ≤ #(ker f)(k) ·#Y0[pj ](k) = #(ker f)(k) · pjrY0 for all j. But this can only hold if

rX0
≤ rY0

.

Since X0 is isogenous to Xt
0, we conclude that rX0 = rXt

0
= sX0 . We hence get a decomposition

X0[p
j ] = (Z/pjZ)rX0

k
× µ

rX0

pj/k ×X0[p
j ]◦,◦.

Definition 4.3. rX0
is called the p-rank of X0. X0 is ordinary if rX0

= g = dimX0.

If X0 is ordinary, then X0[p
j ] ∼= (Z/pjZ)g

k
× µg

pj/k since X0[p
j ] has rank p2jg. So X0[p

∞] ∼=
(Qp/Zp)

g

k
× µg

p∞/k
∼= (Qp/Zp)

g

k
× Ĝg

m/k. Let’s call this the ordinary p-divisible group.

4.2 Lifting the Ordinary p-Divisible Group

Let X0 be an ordinary abelian variety over an algebraically closed field k of characteristic p > 0.
We want to find a canonical description of the local moduli functor M = MX0 . Fix W as in
Section 2.3.
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Let R be an Artinian local W -algebra whose residue field is k. Then p is automatically nilpotent
in R. Theorem 3.4.1 tells us that the liftings of X0 to R are controlled precisely by the liftings
of X0[p

∞] ∼= (Qp/Zp)
g

k
× µg

p∞/k, where g = dimX0. So it suffices to compute the deformation

of this p-divisible group.

Write C0 for the constant factor (Qp/Zp)
g

k
and µ0 the toroidal factor µg

p∞/k. Note that the

formations of C0 and µ0 are canonical, since they come from the étale and connected parts of
various X0[p

j ].

To understand constant and toroidal p-divisible groups, we recall the following strengthening of
Proposition 1.1.2 in the case of an étale morphism.

Proposition 4.2.1. A morphism X → S is étale if and only if it is locally of finite presentation,
and for any commutative diagram of solid arrows

X Y ′

S Y

where Y ′ → Y is a closed immersion of (not necessarily affine) schemes with nilpotent ideal,
there is a unique morphism filling in the dashed arrow.

Proof. [13, Lemma 02HM], [13, Lemma 04FD].

Corollary 4.2.2. Suppose G, H are finite flat group schemes over R and G0, H0 their respective
base-change to k. Then a homomorphism f0 : G0 → H0 lifts uniquely to a homomorphism
f : G→ H if either:

(a) H is étale, or

(b) G is toroidal, i.e. G ∼= µg
N/R for some N > 1, g ≥ 1.

Proof. (b) follows from (a) since DR(G) would be constant.

To establish (a), observe that Proposition 4.2.1 means that f0 lifts to a unique morphism f :
G→ H. But then F : G×G→ H defined by F (x, y) = f(x+ y)− f(x)− f(y) lifts the identity
G0×G0 → Spec(k)→ H0 since f0 is a homomorphism. The uniqueness part of Proposition 4.2.1
then shows that F is the identity G×G→ Spec(R)→ H. Hence f is a homomorphism.

Corollary 4.2.3. Suppose G, H are p-divisible groups over R and G0, H0 their respective base-
change to k. Then a homomorphism f0 : G0 → H0 lifts uniquely to a homomorphism f : G→ H
if either:

(a) H is a constant p-divisible group, or

(b) G is a toroidal p-divisible group.

Proof. Use Corollary 4.2.2 on each f0[p
j ] : G0[p

j ]→ H0[p
j ].

Corollary 4.2.4. Suppose G is a p-divisible group over R which is either toroidal or constant.
Then for any other p-divisible group H, any isomorphism H ⊗R k ∼= G⊗R k lifts uniquely to an
isomorphism H ∼= G.

Proof. Combine Corollary 4.2.3 with Lemma 1.3.3.

We are now ready to compute the category (Def(X0[p
∞])) of p-divisible groups over R which lift

X0[p
∞] = C0 ×µ0. By Corollary 4.2.4, each of C0, µ0 admit a canonical lifting C ∼= (Qp/Zp)

g

R
,

µ ∼= µg
p∞/R to R.
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We consider the category (Ext(C,µ)) of pairs (E, ϵ) where E is an extension (in (Grp/R)) of C
by µ and ϵ : C0 → E ⊗R k is a splitting (in particular, E ⊗R k ∼= X0[p

∞]). Any such E is a
p-divisible group by Proposition 3.2.1: Clearly E = lim−→j

E[pj ] and E is p-divisible by the Five

Lemma. The Snake Lemma gives short exact sequences of the form

0 µ[pj ] E[pj ] C[pj ] 0

and so each E[pj ] is a finite flat group scheme.

So we get a functor F : (Ext(C,µ))→ (Def(X0[p
∞])) sending (E, ϵ) to E.

Theorem 4.2.5. F is an equivalence of categories.

Proof. We construct an inverse to F as follows: Suppose E is a p-divisible group over R reducing
to X0[p

∞]. Then Corollary 4.2.3 shows that we can find a unique lift f : E → C of the projection
f0 : X0[p

∞]→ C0. Each f [p
j ] : E[pj ]→ C[pj ] is faithfully flat since this can be checked on fibres

([13, Lemma 039E] again). In particular, f is a surjective homomorphism of fppf sheaves.

Let K = ker f . As K is a subsheaf of E, K = lim−→j
K[pj ]. Since each f [pj ] : E[pj ] → C[pj ] is

faithfully flat, K[pj ] = ker f [pj ] is a finite flat group scheme. In addition, as E is p-divisible, we
have an exact sequence

0 K[p] E[p] C[p] coker[p]K 0
f [p]

by the Snake Lemma. This shows that coker[p]K = 0, i.e. K is p-divisible. By Proposition 3.2.1,
K is a p-divisible group.

Now K ⊗R k = ker f0 = µ0, so K = µ by Corollary 4.2.4.

Of course the splitting ϵ : C0 → X0[p
∞] is unique by Proposition 4.1.2. Hence

Corollary 4.2.6. The set of isomorphism classes of p-divisible groups over R lifting X0[p
∞] is

in natural bijection with Ext1(C,µ).

Here, the Ext-functor is taken in the abelian category (Grp/R).

4.3 An Extension Problem

Let Tatep(X0) = lim←−j
X0[p

j ](k) where the limit is taken with respect to the system

· · · X0[p
2](k) X0[p](k) 0

[p] [p] [p]

As X0 is ordinary, X0[p
j ](k) ∼= (Z/pjZ)g

k
(k)× µg

pj/k(k)
∼= (Z/pjZ)g. So Tatep(X0) ∼= Zg

p. And

we may (naturally) identify C0 = Tatep(X)⊗Zp
(Qp/Zp)

k
.

Fix an isomorphism Tatep(X0) ∼= Zg
p. We shall first describe Ext1(C,µ) under this choice of

coordinates.

The fixed isomorphism gives rise to identifications C0
∼= (Qp/Zp)

g

k
, C ∼= (Qp/Zp)

g

R
, and thus

Ext1(C,µ) ∼= Ext1(Qp/Zp
R
,µ)⊕g. So it suffices to understand the group Ext1(Qp/Zp

R
,µ).

Consider the directed system

ZR ZR ZR · · ·[p] [p] [p]

which allows for a short exact sequence

0 ZR lim−→ZR Qp/Zp
R

0
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and hence a long exact sequence (writing Hom for Hom(Grp/R))

Hom(lim−→ZR,µ) Hom(ZR,µ) Ext1(Qp/Zp
R
,µ) Ext1(lim−→ZR,µ).

δR

Theorem 4.3.1. δR is an isomorphism.

Proof. Since the second argument of every term in the long exact sequence commutes with finite
direct products, we may assume g = 1, i.e. µ = µp∞/R.

Note first that Hom(ZR,−) ∼= Γ(Spec(R),−). In particular, Hom(ZR,µ)
∼= µ(R) ∼= 1 + mR.

Choose r, s ≥ 1 such that pr is zero in R and mps

R = 0. Then (1 +mR)
pr+s

= 1. This shows that
Hom(lim−→ZR,µ) = lim←−Hom(ZR,µ) = 0, i.e. δR is injective.

For surjectivity, we will show that Ext1(lim−→ZR,µ) = 0. Our first claim is that the natural

map Ext1(lim−→ZR,µ)→ lim←−Ext1(ZR,µ) is injective. We will prove this using the Grothendieck
spectral sequence (cf. [14, Theorem 5.8.3]).

Let C be the category of sheaves of groups on N, viewed as a topological space with open sets
∅, N, and {0, . . . , N} for various N ∈ N. Alternatively, C is the category of inverse systems of
groups indexed by N. Let Γ : C → (Ab) be the global section functor, which simply corresponds
to taking inverse limit.

So G 7→ Hom(lim−→ZR, G) = lim←−Hom(ZR, G) factors as Γ ◦ F where F : (Grp/R) → C is the
functor that takes an R-group G to the system

· · · Hom(ZR, G) Hom(ZR, G) Hom(ZR, G).
[p]∗ [p]∗ [p]∗

Suppose G is injective, then each [p]∗ is surjective by definition. Therefore F (G) is a flasque
sheaf on N, which is Γ-acyclic. So this factorisation satisfies the conditions under which the
Grothendieck spectral sequence applies. In particular, we get an exact sequence

0 R1Γ(F (µ)) Ext1(lim−→ZR,µ) lim←−Ext1(ZR,µ).

Under the identification Hom(ZR,µ)
∼= 1 + mR, F (µ) is the system whose entries are 1 + mR

and whose transition maps are given by the operation of raising to the p-th power. Since
(1 + mR)

pr+s

= 1, such a system is Mittag-Leffler. Therefore R1Γ(F (µ)) = 0 by [13, Lemma
0598], hence we have the injectivity of the natural map as claimed.

To complete the proof, it now suffices to show that Ext1(ZR,µ) = 0. The isomorphism
Hom(ZR,−) ∼= Γ(Spec(R),−) shows that Exti(ZR,−) ∼= Hi

fppf(Spec(R),−) for all i. So we

are left to establish the vanishing of H1
fppf(Spec(R),µ).

Abbreviate Hi(−) = Hi
fppf(Spec(R),−). For an R-group G and a natural number N , we write

Hi(G)[N ] for the kernel of [N ]∗ : Hi(G)→ Hi(G).

First note that H1(µ) = H1(lim−→j
µpj/R) = lim−→j

H1(µpj/R) by [13, Lemma 0739]. Since [pj ]

annihilates µpj/R, [p
j ]∗ annihilates H1(µpj/R). Hence H1(µ) = lim−→j

H1(µ)[pj ]. So it suffices to

show that H1(µ)[pj ] = 0 for all j.

Consider the commutative diagram

0 µpj/R µ µ 0

0 µpj/R Gm/R Gm/R 0

[pj ]

[pj ]
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with exact rows. The associated system of long exact sequences gives a commutative diagram

0 µ(R)/[pj ]µ(R) H1(µpj/R) H1(µ)[pj ] 0

0 Gm/R(R)/[p
j ]Gm/R(R) H1(µpj/R) H1(Gm/R)[p

j ] 0

α β

again with exact rows. Of course α is just the map (1 +mR)/(1 +mR)
pj → R×/(R×)p

j

, which
is always surjective: For any z ∈ R×, we have z + mR ∈ k× and so there is some y ∈ R× with
zyp

j ∈ 1 + mR (as k is algebraically closed). It is also injective, as the only pj-th root of unity
in k is 1. Thus α is an isomorphism, which means that β has to be as well.

But H1(Gm/R) = 0. So the proof is completed.

Hence Ext1(C,µ) is isomorphic to Hom(ZR,µ)
⊕g ∼= µ(R)⊕g. Since every element of µ(R) is

a pr+s-torsion, µ(R) is naturally a Z/pr+sZ-module, hence a Zp-module. And we can further
identify µ(R)⊕g ∼= HomZp

(Zg
p,µ(R)).

The choice of a different isomorphism Tatep(X) ∼= Zg
p would correspond to the automorphism of

HomZp(Zg
p,µ(R)) given by the corresponding change-of-coordinates on Zg

p. Therefore:

Corollary 4.3.2. MX0
(R) ∼= Ext1(C,µ) ∼= HomZp

(Tatep(X0),µ(R)) canonically.

4.4 The Canonical Lifting

By Theorem 4.1.4, we have a canonical isomorphism X0[p
j ] ∼= Dk(X

t
0[p

j ]). This restricts to a
canonical isomorphism µ0[p

j ] ∼= Dk(X
t
0[p

j ](k)
k
) under the connected-étale decomposition, where

we identify µ0[p
j ] = X0[p

j ]◦ and Xt
0[p

j ](k)
k
= Xt

0[p
j ]ét.

Corollary 4.2.2 tells us that this isomorphism lifts to a unique isomorphism

µ[pj ] ∼= DR(X
t
0[p

j ](k)
R
).

So we can identify µ[pj ](R) with HomZ(X
t
0[p

j ](k),Gm/R(R)) = HomZ(X
t
0[p

j ](k),µpj/R(R)).

Taking (co)limits, we obtain an identification of µ(R) with

HomZp(Tatep(X
t
0),µp∞/R(R)) = HomZp(Tatep(X

t
0), Ĝm/R(R))

and therefore a canonical isomorphism

MX0
(R) ∼= HomZp

(Tatep(X0),µ(R)) ∼= HomZp
(Tatep(X0),HomZp

(Tatep(X
t
0), Ĝm/R(R)))

∼= HomZp
(Tatep(X0)⊗Zp

Tatep(X
t
0), Ĝm/R(R))

which is functorial in R since δR is.

Definition 4.4 (Tate’s q-Construction). For X ∈MX0
(R), we write

qX(−,−) ∈ HomZp(Tatep(X0)⊗Zp Tatep(X
t
0), Ĝm/R(R))

for the associated Zp-bilinear form.

We summarise the result as the following theorem:

Theorem 4.4.1 (Serre-Tate Local Moduli). Suppose k is an algebraically closed field of char-
acteristic p, and R is an Artinian local ring with residue field k. Let X0 be an ordinary abelian
variety over k.

Then the map X 7→ qX establishes a canonical bijection between the set of abelian schemes X
over R reducing to X0 and the group of Zp-bilinear forms Tatep(X0) × Tatep(X

t
0) → Ĝm/R(R)

Furthermore, this bijection is functorial in R.
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We note a few expected properties of qX , which follow from explicit computations.

Proposition 4.4.2. Let X0 and Y0 be ordinary abelian varieties over k.

(i) Suppose X ∈ MX0
(R). We write Xt for its dual abelian scheme, which is a member of

MXt
0
(R). Then qX = q⊤Xt , i.e. qX(x, xt) = qXt(xt, x) for any x ∈ Tatep(X0), x

t ∈ Tatep(X
t
0).

(ii) Suppose X ∈ MX0(R) and Y ∈ MY0(R). Then a homomorphism f0 : X0 → Y0 lifts to
a homomorphism f : X → Y (necessarily unique by part (ii) of Theorem 3.3.4) if and only if
qX(x, f t0(y

t)) = qY (f0(x), y
t) for any x ∈ Tatep(X0) and y

t ∈ Tatep(Y
t
0 ).

Proof. [6, Theorem 2.1].

Since we have identified MX0
(R) with a group, there certainly should be some significance to

the lifting that corresponds to the identity.

Definition 4.5. The canonical lifting Xcan
R ∈MX0

(R) of X0 to R is such that qXcan
R

= 0.

In more down-to-earth terms, Xcan
R is simply the lifting whose p-divisible group is the trivial

extension C× µ.

Example 4.4.1. If R is in fact a k-algebra, then Xcan
R = X0 ⊗k R.

Corollary 4.4.3. For ordinary abelian varieties X0, Y0 over k, the natural map

Hom(Grp/R)(X
can
R , Y can

R )→ Hom(Grp/k)(X0, Y0)

is an isomorphism.

Proof. Immediate from part (ii) of Proposition 4.4.2.

Let’s sketch how this theory gives rise to a canonical way of lifting an abelian variety over k to
characteristic 0. Suppose W = W (k) is the ring of Witt vectors over k. By functoriality, the
inverse system

· · · MX0
(W3(k)) MX0

(W2(k)) MX0
(W1(k))

consists of group homomorphisms. In particular, this gives a sequence of abelian schemes
Xcan

Wi(k)
→ Spec(Wi(k)) with Xcan

Wi(k)
⊗Wi(k) Wj(k) = Xcan

Wj(k)
for any j ≤ i. Taking directed

limit of the system Xcan
W1(k)

→ Xcan
W2(k)

→ · · · , we obtain a formal abelian scheme Xcan over

W (k).

By lifting line bundles at the same time, one finds:

Theorem 4.4.4. There is a (projective) abelian scheme Xcan over W (k) completing to Xcan.

Proof. [8, Ch. V, Theorem (3.3)].

Corollary 4.4.5. For ordinary abelian varieties X0, Y0 over k, the natural map

Hom(Grp/W (k))(X
can, Y can)→ Hom(Grp/k)(X0, Y0)

is an isomorphism.

Proof. Combine Corollary 4.4.3 and [2, III1, Théorème 5.4.1].

In particular, Xcan is canonical.

Definition 4.6. Xcan is the canonical lifting of X0 to W (k).
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