
The GAGA Principle of Serre

David Bai

Last Updated: August 2022

0 Introduction

Given a smooth algebraic variety X over C, we can usually associate with it a com-
plex manifold Xh. For example, if X ⊂A

2 is a smooth plane curve, then its set of
closed points identifies a subset Xh = X(C) ⊂ C

2, which can be given a conformal
structure via coordinate projections.
It’s very tempting to ask whether the algebraic geometry of X relates to the ana-
lytic geometry of Xh. This is not crazy at all, since we have many low-dimensional
examples that illustrates an equivalence between the two. The most elementary of
which is the fact that the complex analytic endomorphisms of P1 are precisely the
rational functions. We also have the result that every complex torus is isomorphic
to an elliptic curve via the Weierstrass ℘ function.
There are also very good reasons why an equivalence principle bewteen the two
could be useful: It’s usually easier to obtain rigidity results in the algebraic theory,
whereas one has access to transcendental methods (e.g. singular homology) in the
analytic theory. Allowing the interplay of the two would then provide new kinds of
techniques on both sides.
Understanding how this plays out precisely has long been a subject of interest to al-
gebraic geometers. A certain form of equivalence between smooth projective curves
and compact Riemann surfaces is, allegedly, already known to Riemann. Generalis-
ing those results to higher dimensions, however, isn’t easy.
One of the most important breakthroughs on this topic is the result of Serre in
[Ser56], famously known as GAGA, where a precise equivalence principle between
the algebraic and analytic geometry of a projective variety was formulated. The pur-
pose of this article is to sketch a proof of it, focusing mainly on the cohomological
arguments involved. To avoid divergence from the main point, we will only sketch
the proof of some techincal yet uninspiring parts of the proof. References to the full
proofs will be provided.
The reader is expected to be familiar with the language of schemes, coherent sheaves
and sheaf cohomology on projective spaces.
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1 Analytification of an Algebraic Scheme

Our first task is to associate an “analytic space” Xh to every finite-type C-scheme
X. When the X is smooth and projective, Xh should have the natural structure of a
complex manifold.
We will construct Xh as a ringed space, and we will also equip it with a canonical
map λ : Xh→ X (which may be called the “analytification map”). This is to allow a
convenient way to state GAGA, which is basically an equivalence between coherent
sheaves on X and those on Xh in the occasion where X is a projective variety.
One should note that the analytification of a scheme is NOT the main focus of
GAGA. Little is lost by thinking that analytification does exactly what you think it
does, at least for smooth projective varieties.
First suppose X = SpecC[X1, . . . ,Xn] for some n. Then the set of closed points
X(C) is in bijection with C

n via (X1 − a1, . . . ,Xn − an)↔ (a1, . . . , an). Giving C
n the

usual (Euclidean) topology and complex structure, we take Xh to be the ringed space
whose underlying topological space is C

n and whose sheaf of rings is given by the
sheaf of holomorphic functions on C

n.
This construction comes equipped with a map of ringed spaces λ : Xh → X. On
the level of topological spaces, this is simply the inclusion map (recall that we have
identified Xh =C

n = X(C)) which is automatically continuous since polynomials are
continuous in the complex topology. On the level of structure sheaves, this is the
process of identifying a well-defined rational function on an open set as a analytic
function.
Next, suppose X = SpecR/I where R = C[X1, . . . ,Xn] and I = (f1, . . . , fm) ≤ R. The
quotient map R→ R/I induces the closed embedding i : X → X0 = SpecR. Since
we already know what Xh

0 is, what we are looking for here is to identify Xh as an
“analytic closed subscheme” of Xh

0 .
Like before, the only choice of underlying set of Xh that can possibly make sense is
the set of closed points X(C) of X. The closed embedding X → X0 induces a map
of sets X(C)→ X0(C), so we can give Xh the subspace topology by viewing it as a
(closed) subset of Xh

0 .
There is a small subtlety when it comes to the structure sheaf. Inspired by the
“analytic closed subscheme” idea, we consider the cokernel O of the sheaf morphism
O⊕m
Xh
0
→OXh

0
given (on an open set U ) by g1 ⊕ · · · ⊕ gm 7→ f1g1 + · · ·+ fmgm. We are

done if we can show that O is supported in X.
This however requires us to know what values O actually takes. Morally, we’d want
it to have O(U ) = OXh

0
(U )/IOXh

0
(U ), which is just not true in general. But we don’t

need it to be always true to deduce our claim about the support of O: We get
what we want as long as it is true for a collection of U that forms a basis for the
topology on Xh

0 . And there is a good reason to believe it: The algebraic analogue
i∗OX(U ) = OX0

(U )/IOX0
(U ), albeit untrue in general, is true if U is a distinguished

open set (as (A/I)f � Af /IAf canonically).
Finding this basis inevitably requires a little bit of complex geometry, namely the
following theorem:
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Theorem 1.1. O(U ) = OXh
0
(U )/IOXh

0
(U ) is true if U has the form ∆(g,w,r) = {x ∈

C
n : ∀i, |gi(x)−wi | < ri} where g :Cn→C

l is a polynomial map, w ∈Cl and r ∈Rl
>0.

Proof. It suffices to show the exactness of the functor Γ (∆(g,w,r),−), which is given
by Cartan’s Theorem B (see e.g. [GR65, p. 243]).

As usual, we get a map λ : Xh→ X of ringed spaces.
For general X, we simply cover it by affines and glue together our construction
above. Gluing the λ’s together gives a map of ringed spaces λ : Xh→ X. One can
show that none of these depends on the affine covering. The details of this (as well
as the arguments above) can be found in [Nee07, Ch. 4–6].

2 Analytification of a Coherent Sheaf

Definition 2.1. Let (X,OX ) be a ringed space. A sheafM of OX-modules is coher-
ent if:
1. X can be covered by open sets {Ui}i such that for every i,M|Ui

is finitely gener-
ated, i.e. a quotient of OX |⊕nUi

for some n.

2. For every open V ⊂ X, and every natural number n, every morphism OX |⊕nV →
F |V has finitely generated kernel.
We write (CohX ) to denote the category of coherent sheaves on X.

Remark. In the case where X is a scheme, this coincides with the usual definition
of a coherent sheaf. We advise the reader to assume that coherent sheaves on Xh

(and in general ringed spaces) share similar properties with those on a scheme. In
particular, (CohXh ) is abelian and closed under taking sheaf Hom.

There is only one sensible way to analytify a coherent sheaf.

Definition 2.2. Let X be a finite type C-scheme and λ : Xh→ X its analytification.
For a coherent OX-moduleM, its analytification is the coherent OXh-module given
by the module pullback λ−1M⊗λ−1OX OXh .

Unwinding the definitions gives an universal property:

Theorem 2.1. LetM be a coherent OX -module, then for any morphism D :M→ λ∗F ,
with F an OXh -module, there is a unique morphism e :Mh→F such that D factorises
as

M λ∗F

Mh

D

λ∗e

It’s immediate that analytification is functorial. Moreover,

Theorem 2.2. (i) The operationM 7→Mh, regarded as a functor (CohX )→ (ModOXh
),

is exact.
(ii) For any coherent OX -module M and open U ⊂ X, the natural map Γ (U,M) →
Γ (λ−1U,Mh) is injective.
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We will not include a full proof here. Interested reader may confer [Nee07,
App. 1]. Since we essentially constructed the analytification as a tensor product, the
use of flatness should be expected. Indeed, the point of the proof is the following
result:

Theorem 2.3. The ring of holomorphic functions on C
n is faithfully flat over the ring

of polynomials.

It’s noteworthy that the GAGA paper [Ser56] is also the first piece of literature
where the notion of flatness is used. Serre had invented it purely for algebraic
reasons, but it has found itself useful in many more situations in algebraic geometry
later on, insofar as it almost becomes a standard technical tool in the modern theory.

Corollary 2.4. The functor in Theorem 2.2(i), in fact, lands in (CohXh ).

We callM 7→Mh, (CohX )→ (CohXh ) the analytification functor.

Proof. Let M be a coherent OX-module. We want to show that Mh is a coherent
OXh-module.
Being a coherent sheaf on a scheme,M is locally finitely presented, in the sense that
we can cover X by open sets {Ui}i such that for each i, we have an exact sequence
of the form

OX |⊕mUi
OX |⊕nUi

M|Ui
0

for some m,n possibly depending on i. Analytifying this sequence gives an exact
sequence

OXh |⊕mλ−1Ui
OXh |⊕nλ−1Ui

Mh|λ−1Ui
0

SoMh|λ−1Ui
is a coherent OXh |λ−1Ui

-module, since it’s a cokernel of a map between
coherent OXh |λ−1Ui

-modules. As {λ−1Ui}i is an open cover of Xh = λ−1X, we
conclude the coherence ofMh.

By expanding the definitions, we see that Theorem 2.3 also implies

Theorem 2.5. SupposeM,N are coherent OX -modules, then the mapHom(M,N )h→
Hom(Mh,N h) is an isomorphism.

Lastly, we look at what happens to cohomology when we analytify.

Theorem 2.6. For i ≥ 0 and M coherent, the canonical maps H i(λ) : H i(X,M)→
H i(Xh,Mh) commute with the long exact sequences of cohomology. More precisely, if any
morphismM→N of coherent OX -module induces a commuative diagram

H i(X,M) H i(X,N )

H i(Xh,Mh) H i(Xh,N h)

H i (λ) H i (λ)
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Furthermore, if

0 L M N 0

is an exact sequence of coherent OX -modules, then Theorem 2.2(i) gives an exact sequence
of coherent OXh -modules

0 Lh Mh N h 0

And we assert that the diagram

H i(X,N ) H i+1(X,L)

H i(Xh,N h) H i+1(Xh,Lh)

δ

H i (λ) H i+1(λ)

δ

commutes, where the δ’s denote the respective connecting homomorphisms.

Proof. These calculations can be done by passing to a Čech complex. See [Ser56,
§11] for details.

3 The First GAGA principle

From now on, we fix X = P
n. It’s a mere formality to deduce the analogous results

for when X is a projective variety. We write O = OX , Oh = Oh
X = OXh .

We’ll also use the notation H i(M) = H i(X,M) whenM∈ ob(CohX ) and H i(M) =
H i(Xh,M) when M∈ ob(CohXh ). It should be clear from context as to which one
we mean.
In this section we prove the following result:

Theorem 3.1. For i ≥ 0, the morphisms H i(λ) :H i(M)→H i(Mh) in Theorem 2.6 are
always isomorphisms.

By takingM to be a Hom-sheaf and setting i = 0, we deduce (with the help from
Theorem 2.5) that

Corollary 3.2. The functorM→Mh is full and faithful.

To prove Theorem 3.1, we use a divide-and-conquer strategy: We first show the
theorem in the special case where M = O(m) for some m. Then we prove Serre’s
result that every coherent sheaf on X is a quotient of O(m)⊕p for some p, and use it
to deduce the result in general.

Lemma 3.3. Theorem 3.1 is true forM = O.

Proof. We know that H0(O) and H0(Oh) are both constants (the latter by open
mapping theorem), which are fixed by H0(λ), so H0(λ) is an isomorphism. For
i > 0, we in fact have H i(O) = H i(Oh) = 0. The vanishing of H i(O) is again
clear. The vanishing of H i(Oh) can be obtained via calculation, either from Čech
cohomology or Dolbeault cohomology (making use of e.g. [Huy05, p. 109]).
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Lemma 3.4. Theorem 3.1 is true forM = O(m) for every m.

Proof. Induction on n. For a hyperplane E = V (t) in X = P
n, we have the exact

sequence

0 O(−1) O OE 0

where the second arrow is multiplication by the linear form t. Tensoring with O(k) is
an equivalence of categories, since it has an inverse given by tensoring with O(−k).
In particular, this operation is exact. We therefore have the exact sequence

0 O(k − 1) O(k) OE(k) 0

Taking cohomologies, Theorem 2.6 gives the commutative diagram

· · · H i(O(k − 1)) H i(O(k)) H i(OE(k)) H i+1(O(k − 1)) · · ·

· · · H i(O(k − 1)h) H i(O(k)h) H i(OE(k)h) H i+1(O(k − 1)h) · · ·

Suppose the induction hypothesis is true for n−1, then H i(OE(k))→H i(OE(k)h) is
an isomorphism. The Five Lemma then implies that H i(OE(k))→H i(OE(k)h) is an
isomorphism for all i iff H i(OE(k−1))→H i(OE(k−1)h) is an isomorphism for all i.
But H i(OE(0))→ H i(OE(0)h) is an isomorphism for all i by the preceding lemma,
hence the result.

To extend Theorem 3.1 to general coherent sheaves, we use the following result
from projective algebraic geometry.

Definition 3.1. Let (X,OX ) be a ringed space. An OX-module M is generated by
global sections if the image of Γ (X,M)→Mx generatesMx for all x ∈ X.

Theorem 3.5. For any coherent sheafM on X = P
n, there is some m0 = m0(M) such

thatM(m) is generated by global sections for all m ≥m0.

Before proving this, let’s first see how it allows us to establish Theorem 3.1.

Lemma 3.6. Suppose (X,OX ) is a ringed space whose underlying topological space is
quasicompact. IfM is a coherent OX -module generated by global sections, then there is a
surjection O⊕pX →M for some integer p.

Proof. Note that for any OX-moduleM we have the identification Hom(O⊕pX ,M) �
Hom(OX ,M)p � Γ (X,M)p. This means that a morphism O⊕pX →M can be identi-
fied as a p-tuple of global sections ofM, and that this morphism is surjective if and
only if these global sections generate every stalk.
Now assume thatM is generated by global sections. What’s left to show is then that
it is in fact generated by finitely many global sections.
Let x ∈ X. Since M is coherent, there is an open set U ∋ x on which a finite col-
lection of sections t1, . . . , tr ∈ Γ (U,M) generates My for all y ∈ U . The coherence
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of M also implies that Mx is a finite Ox,X-module. The map Γ (X,M)→Mx has
generating image, so by finiteness of Mx we can extract s1, . . . , sq ∈ Γ (X,M) such
that they generate Mx. In particular, there is some open V ⊂ U around x and
fij ∈ Γ (V ,OX ) such that ti(x) =

∑
j fij (x)sj (x). So we can find some open W ⊂ V

around x such that ti |W =
∑

j fij |W sj |W . Therefore s1, . . . , sq generate My for all
y ∈W .
Quasicompactness allows us to collect finitely many global sections in this fashion
and they necessarily generateM by construction.

Corollary 3.7. Every coherent sheafM on P
n is a quotient of O(N )⊕p for some N,p.

Proof. Theorem 3.5 together with the preceding lemma shows that M(m) is a quo-
tient of O⊕p for some m,p. Tensoring with O(−m), we see that M is a quotient of
O(−m)⊕p.

To finish the proof of Theorem 3.1, we take L = O(N )⊕p as in the corollary and
K the kernel of the surjection. We then have a short exact sequence

0 K L M 0

of coherent O-modules. We proceed by downward induction on the hypothesis that
H i(λ) is an isomorphism for all coherent O-module. This is true for i > 2n since for
these values of i we have H i(F ) =H i(F h) = 0 for all coherent O-module F .
For the induction step, Theorem 2.6 gives the commutative diagram with exact rows

H i(K) H i(L) H i(M) H i+1(K) H i+1(L)

H i(Kh) H i(Lh) H i(Mh) H i+1(Kh) H i+1(Lh)

ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

for each i. Here, the ϵ’s are the respective H i(λ),H i+1(λ)’s. By the induction
hypothesis, ϵ4,ϵ5 are isomorphisms. Lemma 3.4 shows that Theorem 3.1 is true for
L. In particular, ϵ2 is also an isomorphism. Consequently ϵ3 must be surjective by
the Five Lemma. In other words, H i(λ) is always a surjection.
But ϵ1 is an H i(λ), hence a surjection by the result we just obtained. Applying the
Five Lemma again shows that ϵ3 is an isomorphism, so we conclude the induction
step.

Proof of Theorem 3.5. Let t0, . . . , tn be the standard coordinates on P
n and Ui =D(ti)

be the standard affine opens which cover Pn.
We’ll use the fact that coherent sheaves on affine schemes are precisely the sheafifi-
cations of modules. This is merely to simplify the presentation of the proof, as the
reader readily sees that we never make use of the full power of this result.
Since each Ui is affine,M|Ui

is generated by global sections. Therefore it suffices to
show that for each i, every s∗i ∈ Γ (Ui ,M) and all sufficiently large m, there is some
s ∈ Γ (Pn,M(m)) that restricts to s∗i on Ui .
An element of Γ (Pn,M(m)) can be described as a system of sections (s0, . . . , sn), sj ∈
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Γ (Uj ,M) such that sk |Uj∩Uk
= (tj /tk)msj |Uj∩Uk

. We want to show that, for prescribed
i and s∗i ∈Ui , such a tuple with si = s∗i exists for all sufficently large m.
For j , i, Ui∩Uj is a distinguished open set D(ti /tj ) on the affine scheme Uj . Since
M|Uj

is the sheafification of a module, we conclude that there is some s′j ∈ Γ (Uj ,M)
restricting to (ti /tj )ps∗i |Ui∩Uj

on Ui ∩Uj for all sufficiently large p. Take p large
enough to work for all j at once (note that there are only finitely many of them) and
set s′i = s∗i . We then have the formula s′j |Ui∩Uj

= (ti /tj )ps′i |Ui∩Uj
for all j .

Now, for any j,k, the section s′j |Uj∩Uk
− (tk/tj )ps′k |Uj∩Uk

on Uj ∩Uk restricts to zero
on Ui ∩Uj ∩Uk . As Ui ∩Uj ∩Uk is a distinguished open set D(ti /tj ) of the affine
scheme Ui ∩Uj , we use the fact that M|Uj∩Uk

is the sheafification of a module to
conclude that, for all sufficiently large q ≥ q0, (ti /tj )q(s′j |Uj∩Uk

−(tk/tj )ps′k |Uj∩Uk
) = 0

on Uj ∩Uk .
Take q0 large enough to work for all j,k and m0 = q0 + p. For all m = q + p ≥ m0,
the system sj = (ti /tj )qs′j ∈ Γ (Uj ,M) gives the desired global section.

4 The Second GAGA principle

Corollary 3.2 says that the analytification functor is fully faithful, so (CohX ) may be
regarded as a full subcategory of (CohXh ). Natually, we want to know what exactly
is the discrepancy between the two. The answer, which is the very core of GAGA, is
“none”.

Theorem 4.1. Suppose X is a projective variety over C. For every coherent OXh -module
F , there is a coherent OX -moduleM such thatMh = F .

That is, the analytification functor is an equivalence of categories between the
algebraic and analytic coherent sheaves.
Again, we’ll only prove Theorem 4.1 for X = P

n and leave the reduction argument
to the reader. The same notation convention as in the previous section will be used.
We want to make use of the same divide-and-conquer strategy, except this time it’s
a little bit harder, since we are working with analytic instead of algebraic coherent
sheaves. Before we do anything else, we first start an induction on n so that we may
assume Theorem 4.1 for hyperplanes in X.
The main body of the proof will be to derive an analytic analogue of Theorem 3.5,
namely the following:

Theorem 4.2. For any coherent OXh -moduleM, there is some m0 = m0(M) such that
M(m) is generated by global sections for all m ≥m0.

Inevitably, the proof of this requires some prerequisites in both complex geometry
and projective algebraic geometry. The following two theorems will be blackboxed.

Theorem 4.3 (Cartan-Serre). For any coherent Oh-module M, H i(M) is a finite-
dimensional complex vector space.

Proof. [GR04, p. 186].
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Theorem 4.4 (Serre). For any coherent O-moduleM and any sufficiently large m, we
have H i(M(m)) = 0 for all i > 0.

Proof. [Ser55, §65, Prop. 7].

Proof of Theorem 4.2. By the proof of Lemma 3.6, if F is a coherent OXh-module
and Γ (Xh,F ) generates Fx, then there is an open neighbourhood U ∋ x such that
Γ (Xh,F ) also generates Fy for all y ∈U . Hence, since Xh is quasicompact, it suffices

to fix x ∈ X and find m0 = m0(x,M) such that Γ (Xh,M(m)) generates M(m)x for
all m ≥m0.
If Γ (Xh,M(m)) generatesM(m)x then Γ (Xh,M(m′)) generatesM(m′)x for all m′ ≥
m. Indeed, let k be such that x ∈ Uk , then the multiplication by (tk/ti)m

′−m on Ui
induces a map M(m) → M(m′) which is an isomorphism on Uk . So the image
of Γ (Xh,M(m′)) in M(m′)x �M(m)x contains the image of Γ (Xh,M(m)), which
already generates everything. Hence Γ (Xh,M(m′)) generatesM(m′)x.
Therefore we have reduced the problem to finding one m such that Γ (Xh,M(m))
generatesM(m)x.
Choose a hyperplane E in X passing through x. We have the short exact sequence

0 IE Oh Oh
E 0

as per usual, where IE � Oh(−1) is the analytic sheaf of ideals for E. Tensoring with
M (a right-exact operation) gives an exact sequence

0 C M(−1) M B 0

where C is the kernel of M⊗Oh IE → M⊗Oh Oh =M and B =M⊗Oh Oh
E . We

justify this blasphemous introduction of notation by observing that B and C are
both coherent sheaves on E: Indeed, IEB = IEC = 0 by definition.
Seeking information aboutM(m), we twist the sequence above to obtain

0 C(m) M(m− 1) M(m) B(m) 0

This is not a short exact sequence, which is unfortunate since we are looking for
cohomological information about M(m). But fear not – if we introduce Pm =
ker(M(m)→B(m)) = coker(C(m)→M(m− 1)), then the sequence splits into

0 C(m) M(m− 1) Pm 0

0 Pm M(m) B(m) 0

We first look at the pieces

H1(M(m− 1)) H1(Pm) H2(C(m))

H1(Pm) H1(M(m)) H1(B(m))
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in the long exact sequences. By the induction hypothesis, B,C comes from analytifi-
cation of algebraic coherent sheaves (on the algebraic hyperplane corresponding to
E). Combining this with Theorem 3.1 and Theorem 4.4, we see that both H1(B(m))
and H2(C(m)) vanish when m is large enough. From now on we only consider large
m so that this holds.
We then have the inequalities

dimH1(M(m− 1)) ≥ dimH1(Pm) ≥ dimH1(M(m))

These dimensions are finite by Theorem 4.3. Therefore m 7→ dimH1(M(m)) is a
nonincreasing sequence of integers, which must eventually stabilise. That is, for
large enough m, the inequalities are equalities. We again discard small values of m
and only consider those where this already happened.
Then H1(P (m))→H1(M(m)) is a surjective map of vector spaces of the same finite
dimension, so it can only be an isomorphism. This means that

Γ (Xh,M(m)) =H0(M(m))→H0(B(m)) = Γ (Xh,B(m))

must be surjective. The induction hypothesis combined with Theorem 3.5 shows
that, after further discarding small values of m, H0(B(m)) = Γ (Xh,B(m)) generates
B(m)x.
And now we are satisfied with the magnitude of m. We shall show that for the large
values of m that’s left, M(m) is generated by global sections. Set A = Oh

x , M =
M(m)x and p = (IE)x. Let N be the A-submodule of M generated by Γ (Xh,M(m)).
We have B(m)x =M(m)x⊗AOh

x,E =M⊗AA/p =M/pM . Since Γ (Xh,M(m)) surjects

to Γ (Xh,B(m)), the image of N under M→M/pM generates M/pM .
This shows that M =N + pM, which implies M =N +mM where m is the maximal
ideal of A. Nakayama’s lemma (noting M is finitely generated sinceM is coherent)
then gives N =M .

To finish the proof of Theorem 4.1, we note that Theorem 4.2 and Lemma 3.6,
combined with the proof of Corollary 3.7, indicate an exact sequence of the form

0 R Lh0 F 0

in (CohXh ), where L0 is a direct sum of sheaves of the form O(N ) (noting Oh(N ) =
O(N )h). Doing the same with R gives a surjection Lh1→R for some L1 which too
is a direct sum of O(N )′s. So we arrive at an exact sequence

Lh1 Lh0 F 0

Corollary 3.2 tells us that Lh1→L
h
0 comes from a map θ : L1→L0. Theorem 2.2(i)

then shows that F =Mh whereM = cokerθ.
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5 Chow’s Theorem

There are many uses of the GAGA principle. We give one of the applications of the
GAGA principle for Pn.

Theorem 5.1 (Chow’s Theorem). Suppose X ⊂ (Pn)h is a closed subset which is locally
analytic, in the sense that it’s locally the vanishing locus of finitely many analytic func-
tions. Then X is in fact algebraic, i.e. closed in the restriction of the Zariski topology on
P
n to (Pn)h.

Proof. The hypothesis means that the sheaf of ideals of X is coherent. Theorem 4.1
tells us that this sheaf is the analytification of an algebraic coherent sheaf whose
support, which is Zariski-closed, intersects (Pn)h at X.
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