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0 Introduction

Let k be an infinite field and P
n = P

n
k the projective space over it. In [Ser55, §55,

§66], Serre proved the following important result about the cohomology of Pn.

Theorem 0.1. Let F be a coherent sheaf on P
n,

(i) There is some r0 = r0(F ) such that for any r ≥ r0, H
i(Pn,F (r)) = 0 for all i > 0.

(ii) There is some d0 = d0(F ) such that for any d ≥ d0, F (d) is globally generated.

This theorem is important in the sense that it gives a very easy procedure to make a
coherent sheaf on P

n “nice”, namely by twisting it. Needless to say, it is incredibly
powerful in projective geometry.

The purpose of this note, however, is to address an unsatisfactory aspect of Theorem
0.1, namely our lack of knowledge of what r0 and d0 actually are. This piece of
information isn’t really necessary for most applications of this theorem, but knowing
it can often give precious insights into the geometry of F , as we will see later.

We shall first calculate values of r0 for OZ when Z is a geometrically integral curve.
As an application of this, we give a bound on the arithmetic genus of a geometrically
integral curve by the degree of its embedding in projective space.

We will then introduce a quantity that turns out to simultaneously control r0 and
d0 for general F , namely the Castelnuovo-Mumford regularity. Properties of this
can be used to show that each component of the Hilbert functor is a subfunctor of
the Grassmannian functor – an important step in proving the representability of the
former.

The infinitude assumption on k is not absolute: Since the majority of the results
covered here are cohomological, most of them also holds for finite fields by a base-
change argument. We made the assumption so that there is a hyperplane avoiding
any finite set of points, which allows easy induction arguments on projective spaces.
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1 Hilbert Polynomial

We recall the definition and several crucial properties of the Hilbert polynomial of
a coherent sheaf on P

n. The same theory extends easily to projective varieties in
general.

Definition 1.1. Let F be a coherent sheaf on P
n. The Hilbert function of F is the

map

pF :m 7→ χ(Pn,F (m)) =
∞∑
i=0

(−1)ihi(Pn,F (m))

For a closed subscheme Z ⊂ P
n, we often write pZ = pOZ .

Being defined using Euler characteristic, pF enjoys the same linearity property,
namely that a short exact sequence of the form

0 F ′′ F F ′ 0

gives rise to the identity pF ′′ +pF ′ = pF . In particular pIZ +pZ = p
P
n for any closed

subscheme Z ⊂ P
n, so one can pretty easily work out one from the other.

Theorem 1.1. pF is a polynomial.

Proof. [Har77, III, Ex. 5.2].

We therefore call pF the Hilbert polynomial of F . When F = OZ , we call pZ the
Hilbert polynomial of Z .

The Hilbert polynomial encodes important geometric information.

Theorem 1.2. degpF = dimSuppF . In particular, degpZ = dimZ .

Proof. [Ser55, §81].

Corollary 1.3. pF has rational coefficient. In fact, (degpF )!pF (T ) ∈Z[T ].

Proof. Lagrange interpolation.

Definition 1.2. The degree of a closed subscheme Z ⊂ P
n is the leading coefficient

of (degpZ )!pZ (T ).

It’s not hard to check that this notion of degree is consistent with the degree of a
hypersurface as well as the degree of a curve.

Example 1.1. 1. If Z = P
n, then

p
P
n(T ) = χ(Pn,O

P
n(T )) =

(
n+ T
n

)
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2. If Z is a hypersurface of defined by a homogenous polynomial of degree d, then

pZ (T ) = pO
P
n (T )− pO

P
n (−d)(T ) = p

P
n(T )− p

P
n(T − d) =

(
n+ T
n

)
−
(
n+ T − d

n

)
In particular, Z has degree d (duh!).

3. If Z is supported in dimension 0, then pZ = h0(Pn,OZ ) = h0(Z,OZ ) is a non-
negative integer. If Z is reduced, then this integer is simply the number of (distinct)
points that Z consists of.

4. If Z is a geometrically integral curve whose hyperplane section has degree d,
then it has degree d since pZ (T )−pZ (T −1) = d by linearity. Consequently, pZ (T ) =
dT +1− g where g =H1(Z,OZ ) is the arithmetic genus of Z .

2 Geometrically Integral Curves

We shall prove the following theorem:

Theorem 2.1. Suppose C is a geometrically integral curve in P
n of degree d, then we

can take r0 = d −2, i.e. H i(Pn,OC(r)) =H i(C,OC(r)) = 0 for all r ≥ d −2 and i > 0.

Corollary 2.2. If C ⊂ P
n is a geometrically integral curve of degree d and genus g , then

g = (d − 1)2 − h0(C,OC(d − 2)) ≤ (d − 1)2.

Proof. We have h0(C,OC(d−2)) = h0(Pn,OC(d−2)) = pC(d−2) = d(d−2)+1−g =
(d − 1)2 − g .

Since the theorem is cohomological, we may assume WLOG that k is algebraically
closed. As we want a result that has something to do with the degree of the curve,
a natural starting point would be to take a general hyperplane which should inter-
sect C (but avoid its associated points) at a dimension 0 closed subscheme Z with
h0(Z,OZ ) = d.

In view of the long exact sequence of cohomology, it’s somewhat tempting to under-
stand the space H0(Z,OZ (r)) for various values of r . So let’s do just that.

Lemma 2.3. Suppose Z is a 0-dimensional closed subscheme of Pn with h0(Z,OZ ) = d.
Then the map Fr :H0(Pn,O

P
n(r))→H0(Z,OZ (r)) is surjective whenever r ≥ d − 1.

Proof. Choose a hyperplane disjoint from Z . This is possible as k is infinite. We
then dehomogenise the space by removing this hyperplane. Under this setting, Fr
is surjective if and only if fr : Pr → H0(Z,OZ ) is surjective, where Pr is the space
of polynomials in n variables x1, . . . ,xn (the coordinates on A

n obtained from deho-
mogenisation) whose degree is at most r .

Consider the chain 0 ≤ f0(P0) ≤ f1(P1) ≤ · · · of k-vector subspaces of H0(Z,OZ ).
Since H0(Z,OZ ) is a finite k-vector space of dimension d, there is some 0 ≤ i ≤ d−1
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such that fi(Pi) = fi+1(Pi+1). Now, whenever fr (Pr ) = fr+1(Pr+1), we must have

fr+2(Pr+2) = fr+1(Pr+1) +
n∑

j=1

fr+1(xj )fr+1(Pr+1)

= fr+1(Pr+1) +
n∑

j=1

fr+1(xj )fr (Pr )

= fr+1(Pr+1) +
n∑

j=1

fr+1(xjPr ) = fr+1(Pr+1)

So fi(Pi) = fi+1(Pi+1) = fi+2(Pi+2) = · · · . But we know that fr is surjective for large
enough r by Theorem 0.1, so we must in fact have fi(Pi) = fi+1(Pi+1) = fi+2(Pi+2) =
· · · = H0(Z,OZ ). Since i ≤ d − 1, this means that fr is surjective whenever r ≥
d − 1.

Proof of Theorem 2.1. For each r, we have a short exact sequence

0 OC(r) OC(r +1) OZ (r +1) 0

giving the long exact sequence

0 H0(C,OC(r)) H0(C,OC(r +1)) H0(Z,OZ (r +1))

H1(C,OC(r)) H1(C,OC(r +1)) 0

ϵ

δ

For any r ≥ d−2, ϵ is surjective by the preceding lemma since Fr+1 factors through it.
So δ must the zero map for these values of r, giving an isomorphism H1(C,OC(r)) �
H1(C,OC(r + 1)). But we know from Theorem 0.1 that H1(C,OC(r)) = 0 for suffi-
ciently large r, so we must have H1(C,OC(r)) = 0 for any r ≥ d − 2.

3 Castelnuovo-Mumford Regularity

Definition 3.1 (Castelnuovo-Mumford regularity). A coherent sheaf F on P
n is m-

regular if H i(Pn,F (m− i)) = 0 for all i > 0.

This is a bit of a weird definition – we are somehow interested in the vanishing of a
“shifted diagonal” in the array of cohomology groups. The next proposition tells us
that we haven’t really left where we started from.

Proposition 3.1. Suppose F is m-regular, then:

(i) The natural map H0(Pn,F (d))⊗kH0(Pn,O
P
n(1))→H0(Pn,F (d+1)) is a surjec-

tion for any d ≥m.
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(ii) H i(Pn,F (d)) = 0 for any i > 0,d > m − i. Equivalently, F is m′-regular for any
m′ ≥m.

(iii) F (d) is globally generated for any d ≥m.

In particular, m can be taken to be r0 and d0 simultaneously.

Proof. Theorem 0.1 combined with (i) implies (iii). We shall show (i) and (ii) to-
gether by induction on n. Since k is infinite, there is a hyperplane P avoiding every
associated point of F . We therefore have an exact sequence

0 F (−1) F FP 0

where the second arrow is multiplication by the equation defining H . We twist it
and take the long exact sequence of cohomology as usual. The part

H i(Pn,F (m− i)) H i(P ,FP (m− i)) H i+1(Pn,F (m− i − 1))

gives the m-regularity of FP , thus the part

H i(Pn,F (m− i)) H i(Pn,F (m− i +1)) H i(P ,FP (m− i +1))

gives the (m+1)-regularity of F by induction hypothesis. Repeating this shows that
F is m′-regular for any m′ ≥m, which is (ii). As for (i), we consider the commutative
diagram

H0(Pn,F (d))⊗k H0(Pn,O
P
n(1)) H0(P ,FP (d))⊗k H0(P ,OP (1))

H0(Pn,F (d +1)) H0(P ,FP (d +1))

r1

s1 s2

r2

The induction hypothesis gives the surjectivity of s2, and r1 is surjective by (ii). These
give the surjectivity of s1 since kerr2 ⊂ Ims1, hence completing the proof.

What’s good in introducing a weird quantity? Perhaps it gives rise to a nice theorem.

Theorem 3.2. For any polynomial p, there is an integer m0 = m0(p) such that IZ is
m0-regular whenever it has Hilbert polynomial p.

So one can control both r0 and d0 knowing only the Hilbert polynomial. We will see
in a minute why this is very useful. But first, let’s prove it.

Proof. Induction on n again (surprise surprise). Take a general hyperplane P and
consider the short exact sequence

0 I (−1) I IP 0
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where I = IZ and IP = (IZ )P . By induction hypothesis, there is some m1 (WLOG
m1 > 1), depending only on pIP (T ) = p(T )−p(T −1), such that IP is m1-regular. For
i > 1 and d ≥ m1 − i, we have H i−1(P ,IP (d + 1)) = H i(P ,IP (d + 1)) = 0, therefore
H i(Pn,I (d)) � H i(Pn,I (d + 1)). Theorem 0.1 then shows that H i(Pn,I (d)) = 0
whenever i > 1 and d ≥m1 − i.
This is sadly not enough: We do not necessarily have the vanishing of H1(Pn,I (m1−
1)), and it may be necessary to take some even larger m0 ≥ m1 to rectify this
problem. How do we control how large it should be? The claim is that the sequence
{h1(Pn,I (m))}m≥m1−1 in fact strictly decreases to zero.

Indeed, the vanishing of H1(P ,IP (m)) for m ≥m1 − 1 gives the exact sequence

H0(Pn,I (m)) H0(P ,IP (m)) H1(Pn,I (m− 1)) H1(Pn,I (m)) 0
gm

whenever m ≥ m1 − 1. This shows that the sequence is nonincreasing and that, for
m ≥ m1, h

1(Pn,I (m − 1)) = h1(Pn,I (m)) if and only if gm is surjective. But the
diagram we’ve seen before

H0(Pn,F (m))⊗k H0(Pn,O
P
n(1)) H0(P ,FP (m))⊗k H0(P ,OP (1))

H0(Pn,F (m+1)) H0(P ,FP (m+1))

indicates that the surjectivity of gm must imply the surjectivity of gm+1. Theorem 0.1
then tells us that such a situation can only occur if we already have h1(Pn,I (m−1)) =
h1(Pn,I (m)) = · · · = 0, leading to the claim.

We therefore know that any m0 ≥m1+h1(Pn,I (m1−1)) would work. Now let’s pick
one that depends only on p.

We have the bound h1(Pn,I (m1 − 1)) ≤ h0(Pn,OZ (m1 − 1)) from the vanishing of
H1(Pn,O

P
n(m1 − 1)) (recall m1 > 1). On the other hand, all higher cohomology

groups of OZ (m1 −1) vanishes since hi(Pn,I (m1 −1)) vanishes for i ≥ 2. Therefore

h1(Pn,I (m1 − 1)) ≤ h0(Pn,OZ (m1 − 1)) = pZ (m1 − 1) =
(
n+m1 − 1

n

)
− p(m1 − 1)

which gives a value of m0 depending only on p.

What’s the point of all these? Well, suppose we have a Hilbert polynomial p of a
sheaf of ideal on P

n. Let m =m0 =m0(p) be as in the lemma. For any sheaf of ideal
I (defining a closed subscheme Z, say) with pI = p, the vanishing of H1(Pn,I (m))
means that H0(Pn,OZ (m)) is a quotient of H0(Pn,O

P
n(m)). Moreover, we have

h0(Pn,OZ (m)) = pZ (m) =
(n+m

n

)
− p(m). Call this dimension D(m).

We therefore have a map from the set of closed subschemes whose ideal have Hilbert
polynomial p to GrassD(m)(H0(Pn,O

P
n(m)))(k), by sending I to H0(Pn,OZ (m)).

The map is furthermore injective since I (m) is generated by global sections.
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The way our theorem made its crucial contribution in this construction is that it
ensures the existence of some m that works as r0 and d0 for all the ideals with
prescribed Hilbert polynomial.

The same argument can be easily globalised (where we consider instead a flat family
of closed subschemes with a fixed Hilbert polynomial). And some standard defini-
tion yoga translates this result to the statement that the Hilbert functor with fixed
Hilbert polynomial is a subfunctor of a Grassmannian, a very important step towards
showing the existence of Hilbert schemes. Detailed discussions of the existence of
Hilbert schemes is beyond the scope of this note. Interested readers may confer
[FGl+05, Ch. 5]
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