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Fix a field k of characteristic 0. By a D-module over a smooth scheme X, we will always mean a left
DX -module over X that is quasicoherent over OX .

0 Motivation

Let X be a smooth variety over k. Usually, D-module on X are defined as modules over the noncommu-
tative OX -algebra DX = lim−→n

D≤n
X . Formulated this way, it is geometrically concrete in the sense that

explicit computations are usually possible. However, we (I at least) still seek another way to think about
them.

Such pursuit was fueled by the feeling that some parts of the theory appear to, well, “not arise from
nature”. This causes some insufficiency of intuition, especially around Kashiwara’s lemma. The sheaf of
differential operators DX is defined in quite a “practical” way, namely by collecting everything that looks
like a differential operator. Kashiwara’s lemma, in a shocking way however, reveals intristic compatibility
between modules over this ring and closed immersions – which is not even found in modules over OX !
One is then lead to suspect that something is going on behind the scenes.

Another reason of trying to describe D-modules in a separate, more “natural” way is the case of singular
varieties. Using Kashiwara’s lemma, one can define the category of D-modules over singular varieties
roughly as follows: Suppose X is an affine variety. Then it admits a closed embedding i : X → Am for
some m. We then define a D-module on X to be a D-module on Am supported in X. The resulting
category is independent of the choice of this closed embedding: Indeed, suppose j : X → An is another
closed embedding. Then the identity on X extends to morphisms I : An → Am and J : Am → An, and
the diagram of closed embeddings

X Am

An Am+n

i

j graphJ

graphI

commutes. So Kashiwara’s lemma shows that i and j gives the same category of D-modules on X. A
gluing argument is required for non-affine X.

But this is a horribly extrinsic construction: One has to choose local embeddings into ambient spaces,
and glue them back. We want to find a way to obtain the same data in an intrinsic way.

The construction that I will talk about, namely that of a crystal, provides an intrinsic description of
D-modules that resolves these issues to some extent. It has the additional advantage (or disadvantage,
depending on how you look at it) of having quite a simplistic definition.

The core idea of the construction is the following: One might think of a D-module as a quasicoherent
sheaf E equipped with a flat connection E → E ⊗ ΩX . If we are in the differential-geometric setting
and E happens to be a vector bundle, then this data gives rise to the notion of parallel transport along
curves in X. And there is a way to recover the connection from any suitable notion of parallel transport.

This of course cannot be taken word-for-word in the algebraic context. After all, the differential-geometric
construction of parallel transport is way too transcendental. Nonetheless, we are inspired to ask the
following question: If, by some miracle, we are given an algebraic way to move between infinitesimally
close points on X, does that give us an equivalent way of describing D-modules?

The answer is yes.
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1 Quasicoherent Sheaves on the de Rham Space

If one accepts the use of abstract nonsense, then crystals can be defined in quite a simplistic way.

Definition 1.1. Let X be a space (i.e. a functor (CommAlg/k) → (Sets)). A generalised quasicoherent
sheaf F on X is the assignment that takes each u ∈ X(R) to an R-module F(u), and each homomorphism
ϕ : R → R′ to a family of isomorphisms αϕ,u : F(u) ⊗R R′ ∼= F(X(ϕ)(u)) indexed by u ∈ X(R) (note
that X(ϕ)(u) is an element of X(R′)).

These isomorphisms are required to be natural in the sense that for any ϕ : R → R′, ψ : R′ → R′′ and
u ∈ X(R), the diagram

(F(u)⊗R R
′)⊗R′ R′′ F(u)⊗R R

′′

F(X(ϕ)(u))⊗R′ R′′ F(X(ψ ◦ ϕ)(u))

αϕ,u⊗R′R′′

∼=

αψ◦ϕ,u

αψ,X(ϕ)(u)

commutes.

Any such thing is, in particular, a sheaf on the site Spec(k)Zar/X. This is due to the fact that, for any
R-module M , the rule that assigns each affine open SpecA ⊂ SpecR the A-module M ⊗R A gives rise
to a sheaf on SpecR (which is just M̃). So affine-locality arguments are valid.

Example 1.1. If X was a scheme, then a generalised quasicoherent sheaf is really just a quasicoherent
sheaf. Indeed, if we are given a quasicoherent sheaf F , then we can assign, for any u : SpecR→ X, the
R-module corresponding to the quasicoherent OSpecR-module u∗F . Conversely, if we have a generalised
quasicoherent sheaf onX, then its values on affine opens ofX gives a sheaf F onX, which is quasicoherent
because F(SpecA)f = F(SpecA) ⊗A Af = F(SpecAf ) for any affine open SpecA ⊂ X. It is easy to
check that pullbacks of F recovers the values of the orginal generalised quasicoherent sheaf.

We will write Nil(R) to denote the nilradical of R.

Definition 1.2. Let X be a space. The de Rham space (otherwise known as the de Rham stack in
literatures) associated to X is the space XdR sending each k-algebra R to X(R/Nil(R)).

Example 1.2. If X = A1, then XdR(R) = R/Nil(R).

Definition 1.3. A crystal on X is a generalised quasicoherent sheaf on XdR.

To draw connections to our motivation, let’s try to decode this definition into more familiar terms in the
situation where X is actually a smooth scheme. In this case, recall:

Lemma 1.1. Suppose X is a smooth scheme over k. Then X(R) → X(R/Nil(R)) is surjective for any
commutative k-algebra R.

So X(R/Nil(R)) is obtained from R by gluing together “infinitesimally close” R-points. Let’s make a
definition out of it.

Definition 1.4. For z ∈ X(R), we write z̄ for the image of z under X(R) → X(R/Nil(R)). Two
R-points u, v ∈ X(R) are called infinitesimally close if ū = v̄.

Example 1.3. Suppose X = A1 and consider u, v ∈ X(k[ϵ]/(ϵ2)), where u comes from the ring map
k[x] → k[x]/(x2) = k[ϵ]/(ϵ2) and v from the composition k[x] → k[x]/(x) = k → k[ϵ]/(ϵ2). Then u ̸= v
but ū = v̄.

A crystal F on X gives rise to a quasicoherent sheaf on X, which we shall temporarily call F†. This is
constructed in the following way: For any u ∈ X(R), let u† ∈ XdR(R) be the element corresponding to
ū. Then set F†(u) = F(u†). It is easy to check that F† is a generalised quasicoherent sheaf on X.

This is an instance of a more general notion of pullback one can define. Suppose θ : Y → Z is a morphism
of spaces and F is a generalised quasicoherent sheaf on Z, then one may define a quasicoherent sheaf on
Y by assigning to u ∈ Y (R) the module F(θR(u)).

Since X is a scheme, F† is actually just an honest quasicoherent sheaf. An affine-locality argument shows
that we have a natural isomorphism F†(u) ∼= F(u) for any nilpotent-free R and u ∈ X(R).
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For any u, v ∈ X(R) infinitesimally close, we have an isomorphism ηu,v : F†(u) → F†(v) (the “parallel
transport”) given by the sequence of identifications F†(u) = F(u†) = F(v†) = F†(v). It obviously has
the following properties (PT):

(PT0) ηu,u = id.

(PT1) Suppose ϕ : R → S is a ring homomorphism and u, v ∈ X(R) are infinitesimally close, then
ηX(ϕ)(u),X(ϕ)(v) = ηu,v ⊗R 1S .

(PT2) Suppose u, v, w ∈ X(R) are infinitesimally close, then ηu,w = ηv,w ◦ ηu,v.
Conversely, suppose we have such a quaiscoherent sheaf F† and a collection ηu,v of maps satisfying (PT)
(note that combining (PT0) and (PT2) shows that each η is an isomorphism). We can recover the
quasicoherent sheaf F on XdR by simply setting F(u) = F†(ũ) where ũ is any lifting of u ∈ XdR(R) =
X(R/Nil(R)) to X(R) (exists by Lemma 1.1).

We hence obtain a more “geometric” definition of crystals.

Definition 1.5. Suppose X is a smooth scheme. A crystal on X is a quasicoherent sheaf F on x together
with maps ηu,v : F(u) → F(v) for every pair of infinitesimally close u, v satisfying (PT).

2 An Equivalence of Categories

From now on, we fix a smooth scheme X.

Theorem 2.1. The category of crystals on X is equivalent to the category of DX-modules.

Why is this nice? Well, it first of all gives intuition for some classical results in the theory of D-
modules. Take Kashiwara’s lemma as an example. It fails in the OX -module case precisely because
of nilpotents: Indeed, every module has a scheme-theoretic support, but that need not be the reduced
induced subscheme. Removing nilpotents, which is what XdR is doing, can be seen as getting rid of this
issue, so Kashiwara’s lemma should hold true. Indeed, Kashiwara’s lemma does hold for crystals, and
this result does reduce to the usual Kashiwara’s lemma under the equivalence in Theorem 2.1.

Another nice thing is that the de Rham space can be defined for any scheme, not necessarily smooth. So
one can consider quasicoherent sheaves over the de Rham space of a singular variety and hope it behaves
well enough to give a satisfactory theory of D-modules. In fact, the category of D-modules on a (possibly
singular) variety X constructed using Kashiwara’s lemma is equivalent to the category of quasicoherent
sheaves on XdR.

Finally, if one replace “de Rham space” by “crystalline space”, one can use this idea to define arithmetic
D-modules. But that is much much more involved.

Remark. What we defined are technically called left crystals. There is also a mirror theory of right
crystals, where we replace ∗-pullbacks by !-pullbacks, generalised quasicoherent sheaves by ind-coherent
sheaves, and Theorem 2.1 becomes an equivalence between right crystals and right DX -modules.

Enough info-dumping, let’s now turn to the proof, which uses a “de-synthesis” argument: Starting with
Definition 1.5, we will rewrite the characterisation of a crystal into more concrete terms, until we reach
a stage where some easy computations yield what we want.

Proof. Let’s start with decoding what being infinitesimally close actually means. Two R-points u, v ∈
X(R) we infinitesimally close if and only if (u, v) ◦ Spec(R→ R/Nil(R)) factors through ∆X ↪→ X ×X.

In general, a morphism f : X → Z factors through a closed subscheme Y ↪→ Z if and only if the inverse
image ideal f∗IY · OX is zero (this corresponds to the fact that a ring map ϕ : A → B factors through
A/I if and only if ϕ(I)B = 0). Hence u, v are infinitesimally close if and only if the ideal generated by
(u, v)∗I∆X is contained in Nil(R).

But X is a smooth scheme over k (hence locally Noetherian), so this happens exactly when (u, v)∗In+1
∆X

generates the zero ideal in R for large enough n, which in turn means that (u, v) factors through X(n),
the closed subscheme corresponding to In+1

∆X
.

To give a collection η of parallel transports satisfying (PT1), we then need to find a compatible family
of morphisms π∗

1,nF → π∗
2,nF (known as “n-connections”), where πi,n : X(n) → X are the restrictions
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of the first and second projections. One can also consider the completion ∆̂ = lim−→X(n). Giving such

a compatible family is the same as giving a morphism π∗
1F → π∗

2F where πi : ∆̂ → X are again the
projections.

Now, giving π∗
1,nF → π∗

2,nF is the same as giving F → (π1,n)∗π
∗
2,nF . On the level of topological spaces,

π1,n and π2,n both restrict to the homeomorphism ∆X → X, so (π1,n)∗π
∗
2,n is really not that scary:

It is simply OX(n) ⊗OX −, where OX(n) denotes any of the two abstractly isomorphic OX modules
(π1,n)∗OX(n) , (π2,n)∗OX(n) .

So the data of a crystal can be described as the data of a compatible family of morphisms F → OX(n)⊗OX
F . It’s finally time for concrete computations. Recall that DX is an (OX ,OX)-bimodule. So for any left
OX -module M, DX ⊗OX M is naturally a left OX -module.

The key idea in this theory is a perfect pairing D≤n
X ⊗OX OX(n) → OX . Let’s first discuss in details what

happens when X = Am (i.e. “in an étale neighbourhood”) before constructing the pairing in general. In
this case, the pairing is defined as follows: Any ∂ ∈ DAm = Γ(DAm) may be regarded as an operator on
Γ(OAm×Am) via “partial differentiation on the first variable”. Any g ∈ Γ(OX(n)) may be regarded as a

function in Γ(OAm×Am) modulo (x1 − y1, . . . , xm − ym)n+1. The pairing takes any (∂, g) ∈ D≤n
Am ×OX(n)

to ∂g̃(x, x) ∈ Γ(OAm) for any lifting g̃ of g. This is obviously well-defined and perfect (recall the dual
basis constructed in past seminars).

For a general affine X, the case is entirely similar. When X is affine, (π1)∗ is exact, so OX(n) is a quotient
of (π1)∗OX×X with kernel (π1)∗In+1. Now DX acts on the first component of (π1)∗OX×X = OX ⊗kOX .

Compose the action D≤n
X ⊗OX (π1)∗OX×X → (π1)∗OX×X with (π1)∗OX×X → (π1)∗(∆X)∗OX = OX

gives an OX -linear D≤n
X ⊗OX (π1)∗OX×X → OX whose right radical contains (π1)∗In+1. Therefore we

obtain a pairing D≤n
X ⊗OX OX(n) → OX .

This pairing is functorial in affine schemes since (as we have proved in past seminars) the construction
of DX is functorial. So, like DX , these pairings glue nicely over affines and give a global perfect pairing.
This establishes OX -duality between (the right OX -module structure on) DX and (the left OX -module
structure on) OX(n) .

Therefore the data of a morphism F → OX(n) ⊗OX F is the same as the data of a morphism D≤n
X ⊗OX

F → F . The data of a compatible family of the former is then the same as the data of a morphism
DX ⊗OX F → F . Looks familiar?

Now, (PT0) amounts to the fact that 1 ∈ DX acts as the identity, and (PT2) is the compatibility between
the multiplicaion on DX and composition of the action, i.e. the commutativity of the diagram

(DX ⊗OX DX)⊗OX F DX ⊗OX (DX ⊗OX F) DX ⊗OX F

DX ⊗OX F F

This completes the proof.
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